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What Are Datacenter Thermal Hazards/Anomalies? 

• Thermal Hazard/Anomaly: 

• Thermal hazards  can lead to IT and facility equipment damage as well as an 

outage of the datacenter 

• Why does thermal hazard occur?

• Large electrical power consumption in the range of megawatts which gets 
completely transformed into (a lot of) heat.

• Thermal bottlenecks in real-life production workload due to significant spatial 
and temporal thermal heterogeneity [1,2].

• A minor thermal issue can potentially start a chain of events that leads to an 
imbalance of thermal conditions and originating thermal hazards. 

[1] Mohsen Seyedkazemi Ardebili, Carlo Cavazzoni, Luca Benini, and Andrea Bartolini. Thermal characterization of a tier0 datacenter room in normal and thermal emergency conditions. 

In International Conference on High Performance Computing in Science and Engineering, pages 1–16. Springer, 2019.

[2] Mohsen Seyedkazemi Ardebili, Davide Brunelli, Tommaso Polonelli, Luca Benini, and Andrea Bartolini. A full-stack and end-to-end iot framework for room temperature modelling on 

large-scale. Available at SSRN 4075667.

Heat generated by 

the computing nodes

Heat removed by the 

cooling systems



SoA Thermal Anomaly Preventive Actions in Datacenter

• Careful design and worst-case design.
• It has some limitations:

• The different life spans for facilities and computes nodes/ supercomputer
• Heat waves and climate change
• It is not efficient and has more carbon footprints.

• Human in control loop:
• Datacenter experts constantly (24x7) monitor the datacenter thermal/power 

conditions to identify the possible signature of the failure/future failure and update 
the setpoint to prevent the failure. This is expensive and not effective.

Early identifying failures is a complex 

task that requires automated tools.



Complex Cooling Systems

[1] https://www.hpc.cineca.it/hardware/marconi100

[2] https://www.top500.org/

[3] Bartolini, A., et al.: Paving the way toward energy-aware and automated datacentre.ICPP 2019, pp. 8:1–8:8. ACM, New York (2019)

• CINECA is a Large Scale HPC Facility in Europe and a PRACE Tier-0 

Hosting Site [1]

• Marconi -100: Ranked 9th in June 2020 Top500 list. [2]

• 980 Compute Node each with 2 CPUs and 4 GPUs. (~32 

PFlop/s)

• Cooling system is general to most of datacenters
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Reported Real Case

Extraordinary Heatwave

@6PM of 28-07-2021 Marconi100 

(9th Most Powerful Computing System (2020))

Cooling Shortage & Thermal Hazards

Reduced 50% of its Computing Capacity 

Outage of 380 Nodes

MW

Datacenter Thermal Hazards/Anomalies in Practice 



SoA Anomaly Preventive Actions in Datacenter
• Careful design and worst-case design.

• It has some limitations:
• A couple of years ago, when the datacenter was designed, the designer did not know about the future.

• Heat waves and climate change

• It is not efficient and has more carbon footprints.

• Human in control loop:
• Datacenter experts constantly (24x7) monitor the datacenter thermal/power conditions to identify the possible signature of the failure/future 

failure and update the setpoint to prevent the failure. This is expensive and not effective.

• Thermal Anomaly is Severe

• The cooling system is complex and involves many hierarchical sensors on multiple 

levels (Infrastructures and compute nodes)

• Human in the control loop and worst-case design does not work

• Sysadmins need: a tool to highlight the components which lead to the thermal 

anomaly

Need for Automated Approach
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• Utilizing EXAMON, which is a 

monitoring system, we 

collected a holistic dataset of 

Tier-0 datacenter Marconi 100 

in CINECA during the:

• normal in-production and real 

physical thermal failure 

(Reported Failure) 

• Generate thermal hazard 

labels (ML)
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Rule-based 

Statistical Tools

Rules: based on a

study of holistic monitoring

signals, During a normal

production period and

reported real physical

thermal failure.

Thresholds:

• Statistical Approaches

• Recommendation (ASHARE)

SLTA: Severity Level of the 

Thermal Anomaly (SLTA) in 

the datacenter.

Room/Datacenter 

Level 

Thermal Anomaly 

Detection 

Flag: Rule violation named as Flag!
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Dataset
1. Dataset:  Utilizing EXAMON, which is a monitoring system, 

we collected a holistic dataset of Tier-0 datacenter Marconi 

100 in CINECA during the normal in-production and real 
physical thermal failure (Reported Failure)

• Period of the study: 2021-04-08 to 2021-08-18

• Reported real physical thermal hazard on the 2021-07-28
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Reported Real Physical Thermal Hazard
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Dataset
1. Dataset:  Utilizing EXAMON, which is a monitoring system, 

we collected a holistic dataset of Tier-0 datacenter Marconi 

100 in CINECA during the normal in-production and real 
physical thermal failure (Reported Failure)

• Period of the study: 2021-04-08 to 2021-08-18

• Reported real physical thermal hazard on the 2021-07-28

• Analysis conducted on a reduced dataset composed of 242 

parameters 

• Cooling Facilities:

• Air cooling system CRAC units 
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Monitoring

System

Compressor utilization

Free cooling

Free cooling valve open position

Fan speed

Return, and supply air 
temperature



Contribution: Dataset
1. Dataset:  Utilizing EXAMON, which is a monitoring system, 

we collected a holistic dataset of Tier-0 datacenter Marconi 

100 in CINECA during the normal in-production and real 
physical thermal failure (Reported Failure)

• Period of the study: 2021-04-08 to 2021-08-18

• Reported real physical thermal hazard on the 2021-07-28

• Analysis conducted on a reduced dataset composed of 242 

parameters 

• Cooling Facilities:

• Air cooling system CRAC units 

• Water cooling system RDHX

MW

Monitoring

System

Water flow rate

Inlet, and outlet water 
temperature

Position of the three-way valve

Delta temperature of the water



Dataset
1. Dataset:  Utilizing EXAMON, which is a monitoring system, 

we collected a holistic dataset of Tier-0 datacenter Marconi 

100 in CINECA during the normal in-production and real 
physical thermal failure (Reported Failure)

• Period of the study: 2021-04-08 to 2021-08-18

• Reported real physical thermal hazard on the 2021-07-28

• Analysis conducted on a reduced dataset composed of 242 

parameters 

• Cooling Facilities:

• Water cooling system RDHX

• Air cooling system CRAC units

• One rack with 20 nodes 
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Dataset
1. Dataset:  Utilizing EXAMON, which is a monitoring system, 

we collected a holistic dataset of Tier-0 datacenter Marconi 

100 in CINECA during the normal in-production and real 
physical thermal failure (Reported Failure)

• Period of the study: 2021-04-08 to 2021-08-18

• Reported real physical thermal hazard on the 2021-07-28

• Analysis conducted on a reduced dataset composed of 242 

parameters 

• Cooling Facilities:

• Water cooling system RDHX

• Air cooling system CRAC units

• One rack with 20 nodes

• Modbus 

MW

Main electrical power distributions system (Modbus) 

• Total power consumption of ICT

• Total power consumption of RDHX pumps

• Total power consumption of chillers

• Total power consumption of CRAC units

• etc.



Reported Failure Study

Reported Real Physical 

Thermal HazardNormal in Production

Constraint Violation



Reported Failure Study

Reported Real Physical 

Thermal HazardNormal in Production

High Derivative



Methodology

Methodology for Rules 

Definition

Thresholds:

1. Statistical Approaches 

Quantile of 0.99 

2. Recommendations 

ASHRAE



Methodology: Rules/Flags

Cooling Shortage: Cooling system 

reached its maximum capacity or 

the failure of one part

Two main groups of abnormal patterns

~300 Rules each one can raise a flag

Violation of 

Thermal/ASHRAE 

Recommendations.

Rack/Room consumes more power 

than typical and reaches its 

maximum computing capacity 

based on the history.

For example, a high derivative of the 

power consumption or temperature. 

How can we aggregate ~300 (it can reach 

thousands) rules to have one metric for 

identifying thermal anomalies?



• Blue Line: 

• ~300 Rules each one can raise a Flag

• Ʃ!"#$%

• Red Line: 

• Severity Level of the Thermal Anomaly (SLTA) in the datacenter, 

• Proposed as a new metric calculated by aggregation of rules MovingAverage(Ʃ!"#$%) 

Severity Level of Anomaly MA(Ʃ!"#$%)



• Severity Level of the Thermal Anomaly (SLTA) in the datacenter:

• We applied this method for the entire dataset for 4 months  

Severity Level of Anomaly MA(Ʃ!"#$%)

Peak of SLTA

All Study Period

Reported Real Physical 

Thermal Hazard

SLTA Highlights Successfully the Reported Real Physical Thermal Hazard



• Severity Level of the Thermal Anomaly (SLTA) in the datacenter: 

Severity Level of Anomaly MA(Ʃ!"#$%)

Reported Real Physical Thermal Hazard

Outage of Half of the Capacity 

Medium Level Thermal Anomalies: 

• Interesting points around the 

reported anomaly

• We inspected these points with the 

behavior of the datacenter major 

components
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• Severity Level of the Thermal Anomaly (SLTA) in the datacenter: 

Severity Level of Anomaly MA(Ʃ!"#$%)

Reported Real Physical Thermal Hazard

Outage of Half of the Capacity 

Medium Level Thermal Anomalies: 

• Interesting points around the 

reported anomaly

• We inspected these points with the 

behavior of the datacenter major 

components

A

C

B

Sysadmins need: a tool to highlight the components which lead to the thermal anomaly

• Visual inspection of each of these three conditions.

• Introduce per components severity level of the anomaly, which can identify the sources 

of the anomalies

Automated Approach

Per Components



Thermal Anomaly Severity Level Percomponent
Locations of Anomalies (The annotation is a normalized number)
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Experimental Results 
Detailed Study of Real Physical Failure to Understand the Reasons

Behind the High Severity Level of Anomaly 

• Point A:

• Nodes’ inlet temperatures are normal

• Computing loads are high

• Reaction of the cooling systems is not fast 
enough to support computing load, which 
turns into high temperature at nodes level. 



Experimental Results 
Detailed Study of Real Physical Failure to Understand the Reasons

Behind the High Severity Level of Anomaly 

• Point A:

• Nodes’ inlet temperatures are normal

• Computing loads are high

• Reaction of the cooling systems is not fast 
enough to support computing load, which 
turns into high temperature at nodes level. 



MW

Thermal Anomaly Severity Level Percomponent
Locations of Anomalies (The annotation is a normalized number)



Experimental Results 
Detailed Study of Real Physical Failure to Understand the Reasons

Behind the High Severity Level of Anomaly 

• Point B:

• Nodes’ level parameters are normal

• Activation of free cooling is the primary source of 
signals’ fluctuations in cooling systems

• Signals’ fluctuations as a suspicious condition.



Thermal Anomaly Severity Level Percomponent
Locations of Anomalies (The annotation is a normalized number)

MW



Experimental Results 
Detailed Study of Real Physical Failure to Understand the Reasons

Behind the High Severity Level of Anomaly 
• Point C:

• Increasing the computing load

• Activation of free cooling

• Reduction in RDHX cooling capacity. 

• Which increase: 

1. Room temperature, 

2. Inlet and outlet water 
temperature of RDHX 

3. Inlet and outlet temperature of 

CRAC units, 

• which leads to out-of-control conditions in node 
level and room level. 

Total ICT Power Consumptions [KW]

Free Cooling



Experimental Results 
Detailed Study of Real Physical Failure to Understand the Reasons

Behind the High Severity Level of Thermal Anomaly 
• Point C:

• Increasing the computing load

• Activation of free cooling

• Reduction in RDHX cooling capacity. 

• Which increase: 

1. Room temperature, 

2. Inlet and outlet water 
temperature of RDHX 

3. Inlet and outlet temperature of 

CRAC units, 

• which leads to out-of-control conditions in node 
level and room level. 

• The SLTA method is practical. 

• SLTA’s peak during the 4 months is in the reported thermal hazard. 

• Fast variation of the IT (Computing Load) does not support by the cooling system.

• Free Cooling System: can create signal fluctuations which can be seen as an anomaly  
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Conclusions and Future Works
• Complete Dataset: Normal and Abnormal

• Rule-based statistical methods (flags):
• Explore different metrics at the datacenter, system, sub-system, and compute node level

• Severity Level of the Thermal Anomaly (SLTA) in the datacenter MA(Ʃ!"#$%) 

• Threshold Definition Methodology
• Method Successful Validation Against Reported Real Physical Thermal Anomaly

• Method Highlight the location of the anomalies
• Thermal Anomaly Severity Level Per Component  

• High potential in maintenance and troubleshooting.

• Future Work: 
• This method can extend to other kinds of anomalies (like application-level anomaly detection, etc.) 
• For more sophisticated ML classification methods which rely on the label 

• Or in the semi-supervised method, which relies on a normal part of the dataset

• We are working to remedy flags’ weakness in analyzing the complicated correlation of the signals in 
finding the anomalies or suspicious patterns by employing a semi-supervised ML-based approach to 
improve anomaly detection performance. 
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Backup Slides

Name of Parameter Value

processor 2x16 cores IBM POWER9

Memory Per Node 256 GB

Peak Performance ~32 PFlop/s

Number of Racks 55 total (49 compute)

Number of Chassis Per Rcak 20

Number of Nodes in Room 980

Sampling Rate 20 Second

Accelerators 4 x NVIDIA Volta V100 GPUs

Thermal Hazard 2021-07-28





Sysadmins need: a tool to highlight the components which lead to the thermal anomaly

• Visual inspection of each of these three conditions.

• Introduce per components severity level of the anomaly, which can identify the sources 

of the anomalies

Automated Approach

Per Components


