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What Are Datacenter Thermal Hazards/Anomalies?

Heat generated by Heat removed by the
the computing nodes cooling systems

* Thermal Hazard/Anomaly:

 Thermal hazards can lead to IT and facility equipment damage as well as an
outage of the datacenter

* Why does thermal hazard occur?
e Large electrical power consumption in the range of megawatts which gets
completely transformed into (a lot of) heat.
* Thermal bottlenecks in real-life production workload due to significant spatial
and temporal thermal heterogeneity [1,2].

A minor thermal issue can potentially start a chain of events that leads to an
imbalance of thermal conditions and originating thermal hazards.

[1] Mohsen Seyedkazemi Ardebili, Carlo Cavazzoni, Luca Benini, and Andrea Bartolini. Thermal characterization of a tierO datacenter room in normal and thermal emergency conditions.

In International Conference on High Performance Computing in Science and Engineering, pages 1-16. Springer, 2019.
[2] Mohsen Seyedkazemi Ardebili, Davide Brunelli, Tommaso Polonelli, Luca Benini, and Andrea Bartolini. A full-stack and end-to-end iot framework for room temperature modelling on

large-scale. Available at SSRN 4075667.



SoA Thermal Anomaly Preventive Actions in Datacenter

e Careful design and worst-case design.

* It has some limitations:
* The different life spans for facilities and computes nodes/ supercomputer
* Heat waves and climate change
* |tis not efficient and has more carbon footprints.

* Human in control loop:

* Datacenter experts constantly (24x7) monitor the datacenter thermal/power
conditions to identify the possible s%nature of the failure/future failure and update
the setpoint to prevent the failure. This is expensive and not effective.

Early identifying failures is a complex

task that requires automated tools.




Complex Cooling Systems

Room F CINECA is a Large Scale HPC Facility in Europe and a PRACE Tier-0

Marconi 100 Cold Aisle | Hosting Site [1]
[%L ¢ Marconi -100: Ranked 9th in June 2020 Top500 list. [2]

I 980 Compute Node each with 2 CPUs and 4 GPUs. (~32

PFlop/s)
Cooling system is general to most of datacenters
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[3] Bartolini, A., et al.: Paving the way toward energy-aware and automated datacentre.ICPP 2019, pp. 8:1-8:8. ACM, New York (2019)
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CINECA is a Large Scale HPC Facility in Europe and a PRACE Tier-0
Hosting Site [1]
Marconi -100: Ranked 9th in June 2020 Top500 list. [2]

* 980 Compute Node each with 2 CPUs and 4 GPUs. (~32

PFlop/s)
 Hot/Cold Aisle
* Cooling Systems:
* Water Cooling System:
* Rear Door Heat Exchangers (RDHX)
 The RDHX device is placed in front of the hot
outlet airflow of the compute node.

* All racks are equipped with RDHX
* RDHX of racks are in the hot aisle
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Datacenter Thermal Hazards/Anomalies in Practice

[HPC-NEWS] Marconi100: reduced production due to extraordinary heatwave
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SoA Anomaly Preventive Actions in Datacenter

design and worst -case design.

It ha
* Acouple of years ago, W aaater was designed, the designer did not know about the future
Heat waves and climate change
It is not efficient and has more carbon footprints.

* Human in control loop:

Datacenter exas 24x7) monitor the datacenter thermal/power conditions to identify the possible sigfateme ilire /future
i gPpdate the setpomt to prevent the failure. This is expensive and not effective.

Thermal Anomaly is Severe

The cooling system is complex and involves many hierarchical sensors on multiple
levels (Infrastructures and compute nodes)

Human in the control loop and worst-case design does not work

Sysadmins need: a tool to highlight the components which lead to the thermal
anomaly

mmmm) Need for Automated Approach




oA Anomaly Detection in Datacenter

Automated
Methods

Rule-based

ML-based
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Dataset

1. Dataset: Utilizing EXAMON, which is a monitoring system,
we collected a holistic dataset of Tier-O datacenter Marconi
100 in CINECA during the normal in-production and real
physical thermal failure (Reported Failure)

* Period of the study: 2021-04-08 to 2021-08-18
* Reported real physical thermal hazard on the 2021-07-28
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Dataset

1. Dataset: Utilizing EXAMON, which is a monitoring system,
we collected a holistic dataset of Tier-0 datacenter Marconi Chille
100 in CINECA during the normal in-production and real I
physical thermal failure (Reported Failure) T’

e Period of the study: 2021-04-08 to 2021-08-18
* Reported real physical thermal hazard on the 2021-07-28
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1. Dataset: Utili
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Dataset

1. Dataset: Utilizing EXAMON, which is a monitoring system,
we collected a holistic dataset of Tier-O datacenter Marconi

100 in CINECA during the normal in-production and real

physical thermal failure (Reported Failure)
e Period of the study: 2021-04-08 to 2021-08-18
* Reported real physical thermal hazard on the 2021-07-28

* Analysis conducted on a reduced dataset composed of 242

parameters

Cooling Facilities:
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How can we aggregate ~300 (it can reach
thousands) rules to have one metric for

Severity Level of Anomaly MA(2Flags)
* Blue Line: \/

e ~300 Rules each one can raise a Flag
* 2Flags

e Red Line:

» Severity Level of the Thermal Anomaly (SLTA) in the datacenter,
* Proposed as a new metric calculated by aggregation of rules MovingAverage(2Flags)
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How can we aggregate ~300 (it can reach
thousands) rules to have one metric for

Severity Level of Anomaly MA(2Flags)
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Severity Level of the Thermal Anomaly:

Severity Level of Anomaly MA(2Flags)
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Severity Level of the Thermal Anomaly:
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Sysadmins need: a tool to highlight the components which lead to the thermal anomaly

e Visual inspection of each of these three conditions.
* Introduce per components severity level of the anomaly, which can identify the sources

i
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Automated Approach
Per Components
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* Introduce per components severity level of the anomaly, which can identify the sources
of the anomalies
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Experimental Results

Detailed Study of Real Physical Failure to Understand the Reasons
Behind the High Severity Level of Anomaly

Point A:

Nodes’ inlet temperatures are normal
Computing loads are high

Reaction of the cooling systems is not fast

enough to support computing load, which
turns into high temperature at nodes level.
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Behind the High Severity Level of Anomaly
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Experimental Results

Detailed Study of Real Physical Failure to Understant

Behind the High Severity Level of Anomaly

Point B:
* Nodes’ level parameters are normal

* Activation of free cooling is the primary source of
signals’ fluctuations in cooling systems

e Signals’ fluctuations as a suspicious condition.
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Experimental Results Total ICT Power Consumptions [KW]

Detailed Study of Real Physical Failure to Understand the—
Behind the High Severity Level of Anomaly

Point C:
* Increasing the computing load —— ,_-.,_-_/'_“)

* Activation of free cooling
* Reduction in RDHX cooling capacity.

e  Which increase:

1. Room temperature,

2. Inlet and outlet water
temperature of RDHX

3. Inlet and outlet temperature of
CRAC units,

e which leads to out-of-control conditions in node
level and room level.

Reported Real Physical Thermal Hazard
2021-07-28
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Experimental Results

Detailed Study of Real Physical Failure to Understand the Reasons
Behind the High Severity Level of Thermal Anomaly

Point C:

* Increasing the computing load

* Activation of free cooling

* Reduction in RDHX cooling capacity.

e  Which increase:
1.
2.

3.

Room temperature,

Inlet and outlet water
temperature of RDHX

Inlet and outlet temperature of
CRAC units,

e which leads to out-of-control conditions in node
level and room level.

Room F
Marconi 100

Cold Aisle

Cold Aisle

 The SLTA method is practical.
e SLTA’s peak during the 4 months is in the reported thermal hazard.

* Fast variation of the IT (Computing Load) does not support by the cooling system.

* Free Cooling System: can create signal fluctuations which can be seen as an anomaly
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Thermal Anomaly Severity Level Percomponent

Sysadmins need: a tool to highlight the components which lead to the thermal anomaly
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Conclusions and Future Works

Complete Dataset: Normal and Abnormal

Rule-based statistical methods (flags):
* Explore different metrics at the datacenter, system, sub-system, and compute node level
Severity Level of the Thermal Anomaly (SLTA) in the datacenter MA(2Flags)
Threshold Definition Methodology
Method Successful Validation Against Reported Real Physical Thermal Anomaly

Method Highlight the location of the anomalies
* Thermal Anomaly Severity Level Per Component

High potential in maintenance and troubleshooting.

Future Work:
* This method can extend to other kinds of anomalies (like application-level anomaly detection, etc.)
* For more sophisticated ML classification methods which rely on the label
e Orinthe semi-supervised method, which relies on a normal part of the dataset

* We are working to remedy flags’ weakness in analyzing the complicated correlation of the signals in
finding the anomalies or suspicious patterns by employing a semi-supervised ML-based approach to
improve anomaly detection performance.
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Backup Slides

Name of Parameter Value
processor 2x16 cores IBM POWER9

Memory Per Node 256 GB

Peak Performance ~32 PFlop/s

Number of Racks 55 total (49 compute)
Number of Chassis Per Rcak 20
Number of Nodes in Room 980

Sampling Rate 20 Second

Accelerators

4 x NVIDIA Volta V100 GPUs

Thermal Hazard

2021-07-28
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Sysadmins need: a tool to highlight the components which lead to the thermal anomaly

* Visual inspection of each of these three conditions.
* Introduce per components severity level of the anomaly, which can identify the sources
of the anomalies

Automated Approach

)
- Per Components




