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1 Introduction

The modular design of the European Pilot for eXascale (EUPEX) platform has a strong impact on
the architecture of the software ecosystem. The Modular Supercomputer Architecture (MSA)
adds an additional level in the hierarchy of traditional supercomputing systems by introducing the
concept of tightly-coupled modules. Each module, in turn, is a parallel computer1 with hardware
characteristics satisfying the requirements of a specific type of application or parts thereof.
The tight coupling is ensured by means of a federated high-speed network joining potentially
different, module-specific fabrics.

This architectural approach comes with advantages compared to traditional designs and chal-
lenges regarding the whole software stack ranging from the management layer up to the appli-
cation level. The notion of modules enables MSA systems to evolve over time, i. e., instead of
disassembling a system after its lifetime, modules can be added and/or removed. However, this
requires support of the management software providing the ability to insert or remove modules
with minimal effort and impact on the system’s operation, i. e., large system downtimes have to
be avoided. The execution environment has to be capable of providing an efficient access to
all system resources to the applications. On the one hand, this requires the ability to execute
parallel workloads transparently across multiple modules. On the other hand, it should also allow
applications to leverage topological information on the MSA hierarchy for further optimisation.
This requires close interaction with the runtime environment providing Application Programming
Interfaces (APIs) for accessing this information.

Power management, energy efficiency, and performance optimisation are crucial to achieve
Exascale performance while meeting a reasonable power budget. Therefore, tools for monitoring

1This also includes quantum modules.
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FIGURE 1: THE EUPEX SOFTWARE ECOSYSTEM COVERING ALL ASPECTS RANGING FROM SYSTEM MAN-
AGEMENT, VIA THE EXECUTION ENVIRONMENT, THROUGH TO TRACING/MONITORING/PROFIL-
ING AND INPUT /OUTPUT (I/O).
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and profiling have to be adapted to the design of the EUPEX platform covering all levels ranging
from the system level, via the node level through to the application level. Finally, the I/O system
is also affected by the modular system design. Instead of a single, central storage, MSA system
exhibit a multi-level storage hierarchy with different characteristics. The system software faces
the challenge of providing fast and scalable access to data for heterogeneous workflows and
applications while minimising data transfers across the different storage tiers.

This deliverable introduces the software ecosystem of the EUPEX platform (cf. Fig. 1) and
details how the above-mentioned challenges are met. Chapter 2 presents components of the
management software stack. Chapter 3 introduces the fully MSA-aware execution environment
enabling a flexible and efficient utilisation of the available resources within the EUPEX platform.
Chapter 4 deals with tools for performance and energy efficiency that allow for monitoring and
profiling the applications’ power/energy consumption and to determine performance bottlenecks.
And finally, Chapter 5 presents the elements of the I/O system enabling fast and scalable access
to data within the hierarchical storage system.

© Eupex. All rights reserved. Page 7 of 55
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2 Management Software Stack

The role of T5.1 is to provide a management software stack for the EUPEX Pilot, which meets the
requirements of the MSA [1, 2] and hence will also enable the management of future MSA-based
supercomputers. While traditional management software stacks used to deal with individual
cluster for login, services and compute nodes, the MSA-aware management stack will need to
embrace the whole picture to efficiently and coherently operate a set of strongly linked modules.
This management software stack will not be build from scratch, but rely on the integration of
different software pieces:

CEA’s management stack Ocean

ParTec’s cluster management suite ParaStation Modulo

Elements to ensure a Trusted Execution Environment (TEE) provided by Foundation for
Research and Technology ś Hellas (FORTH)

LLview as a łportalž for making lower level information from the computing nodes available
to the users provided by Forschungszentrum Jülich GmbH

The main effort in T5.1 will be about the integration of these components into a coherent and
efficient cluster management stack for the EUPEX Pilot. We will first provide some details on
the requirements for such a software stack. This is followed by a description of the different
components of the stack, along with a planning of the different elements to be done as well as
their integration into a single management stack for the EUPEX Pilot.

2.1 Control Plane

2.1.1 Ocean

Ocean [3] is an open source suite for High Performance Computing (HPC) cluster administration.
It is developed by Commissariat à l’énergie atomique et aux énergies alternatives (CEA) and
supports (1) the deployment phase and (2) the day-to-day management of large HPC systems.
In its current version, Ocean is already used as administration stack on all the different HPC
clusters on CEA’s premises, including the Tier-0 system Irene [4]. Ocean will be developed further
within the EUPEX project, as to serve also the EUPEX Pilot and its particular needs.

Roughly speaking, Ocean consists of two parts: (1) Ocean-core and (2) Ocean-stack. Ocean-core
is an RPM-based Linux distribution tailored to HPC cluster administration. This distribution is
built upon a standard Linux distribution and gathers a large range of open source tools, allowing
for an almost automated management of heterogeneous HPC clusters. Today, Ocean-core is
based on CentOS and will move to Almalinux for future versions.

In addition, Ocean-stack describes design and implementation guidelines for such HPC clusters,
along with best practices and standard operating procedures. This applies to main services
management (such as deployment, content delivery, configuration management, hardware
management, etc.) in a robust way. Ocean-stack is the handbook to build and operate HPC
clusters at scale.

© Eupex. All rights reserved. Page 8 of 55
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The suggested reference deployment scheme for the EUPEX Pilot is shown in Figure 2. It
consists of a set of services provided for the entire cluster. These services are hosted on the
machines called TOP1, TOP2, TOP3 and WORKER1, WORKER2, and WORKER3 constituting the
core administration service.

In addition, each cluster type (login, compute, storage) is connected to the core administration
service through two or more administrative nodes, so-called islets (ISLET10, ISLET11 for one
cluster and ISLET20, ISLET21 for another one). Each islet will have for some services its local
instances (e. g., for the boot and installation services). With this kind of architecture, each
new cluster can be added with its own resources connected to the core administration service
providing a cached level with a centralised administration. This approach does scale well and is
currently in production on the CEA sites with 16 islets and 5000 nodes.

FIGURE 2: THE REFERENCE DEPLOYMENT SCHEME FOR THE EUPEX PILOT BASED ON THE OCEAN ARCHI-
TECTURE.

Developments/Extensions planned within EUPEX

In the Ocean project, we plan to provide some evolutions regarding EUPEX:

Support the EUPEX Central Processing Unit (CPU) architecture in Ocean-Core

Describe the EUPEX CPU, Graphics Processing Unit (GPU), and interconnect installation
and integration in Ocean-stack

Create a collaborative platform to allow EUPEX community to contribute to the project

© Eupex. All rights reserved. Page 9 of 55
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Timeline for development and for the integration

M24 Updated Ocean version

M30 Collaborative platform and tools created and available to the EUPEX community

Ocean-core pre-release supporting aarch64

M36 Final Ocean version with EUPEX dependencies

2.1.2 ParaStation Modulo

ParaStation Modulo is the MSA-enabling supercomputing software suite developed by ParTec.
It is extensively used in production environments such as the Jülich Research on Exascale
Cluster Architectures (JURECA) and Jülich Wizard for European Leadership Science (JUWELS)
Cluster-Booster systems run by Jülich Supercomputing Centre (JSC) and the modular MeluXina
system in Luxembourg.

This software suite provides a holistic system software stack for supercomputing, covering
everything from system provisioning and management, through automated fault detection and
problem tracking, to the provisioning of an execution environment and runtime system for large-
scale, modular workloads. ParaStation Modulo is composed of four main pillars (cf. Fig. 3):

Is
su

e 
Tr

ac
ki

ng
R

ou
tin

g/
Tr

ia
ge

M
ai

nt
en

an
ce

Pl
an

ni
ng

MPI-4 Runtime
Environment

PMIx/
Accounting

System
Software

Error Detection/
Handling

System
Integrity Analysis

Configuration
DatabaseProvisioning Networking Boot / Image

Handling

MPI
Runtime

OS /
Frontend Cloud

RHEL-compatible OS

HA K8s VM Cloud···
FIGURE 3: THE FOUR PILLARS OF THE PARASTATIONMODULO SOFTWARE SUITE: PARASTATION CLUSER-

TOOLS, PARASTATION HEALTHCHECKER, PARASTATION TICKETSUITE, AND PARASTATION
MPI.
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ParaStation ClusterTools This is a toolbox enabling modular cluster management, provisioning,
and administration. Its image-based approach for node provisioning supports both diskless
and diskfull installations while still supporting individual, per-node customisations.

ParaStation HealthChecker This is a framework enabling automated error detection and in-
tegrity checking on the global system level and on the node level. It comprises a compre-
hensive set of fast and non-destructive tests minimising the likelihood for node failures
during job execution while maximising the system utilisation. Part of this framework is the
so-called checkbot that regularly tries to bring back offlined nodes by eliminating transient
errors.

ParaStation TicketSuite This is a powerful tool for issue tracking, analysis, maintenance plan-
ning, etc. It integrates with the ParaStation ClusterTools and the ParaStation Healthchecker.
This way, it enables seamless support actions for on-site and off-site teams and constitutes
the single point of contact for all parties involved in the utilisation and administration of a
supercomputing system.

ParaStation MPI Is composed of a process manager and an Message-Passing Interface (MPI)
runtime. Both components are tightly integrated, enabling efficient resource utilisation
on HPC systems by large-scale, parallel applications. Its rich set of features especially
targeting MSA architectures allows for the execution of modular workloads and workflows.
By adhering to the Process Management Interface for Exascale (PMIx) standard, a scalable
process start-up is ensured even for third-party runtimes and communication middlewares.

Developments/Extensions planned within EUPEX

The EUPEX management stack will be the result of the integration of ParaStation Modulo with
Ocean. Therefore, the components of ParaStation Modulo have to be adapted to support the
Ocean-core Linux distribution. This can already be achieved on the EUPEX Alfa Pilot platform
(EAP) to a large extent. However, this integration has to be verified as soon as a first beta
system is available to ensure the smooth interplay of both management stacks on the final pilot
system.

The ParaStation ClusterTools have to be developed further to support the EUPEX hardware
platform, e. g., access to the Baseboard Management Controller (BMC) is likely to differ from the
interfaces commonly used for traditional x86-based systems. Additionally, the ParaStationHealth-
Checker will play an important role during installation and operation of the Pilot system. In this
context, its set of tests will be extended and adapted to the platform, ensuring stable system
operation.

Timeline for development and for the integration

M24 Initial support for the Ocean-core Linux distribution

M30 Collaborative platform and tools created and available to the EUPEX community

ParaStation Modulo pre-release supporting the EUPEX hardware platform

M42 Final integration of ParaStation Modulo with Ocean meeting EUPEX dependencies
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2.2 Trusted Execution and Monitoring

2.2.1 TEE-Enabled Storage Device Access

The lack of trust in third-party or shared resources within an HPC environment poses a significant
barrier to distribute computations, especially when sensitive data is involved. As the importance
of data increases for modern applications and workflows, protecting data within an HPC system
from other applications and users becomes an important challenge. Even though current privacy-
enhancing technologies, such as homomorphic encryption, can increase security, they are still
very slow and can have very high storage requirements, especially for rich computations [5,
6]. Hardware-based TEEs are an attractive alternative that can provide trust guarantees for
code execution in HPC computing environments and protect even against highly privileged
adversaries [7].

TEEs derive from decades of similar efforts; however, it is only the recent years that vendors have
started to provide hardware TEE support within commodity processors. The most popular cases
include Advanced RISC Machines (ARM) Trust Zone [8], AMD SEV [9], and Intel SGX [10], each
of which comes not only with different architectural designs and execution models, but with
different software stacks and Software Development Kits (SDKs). As a matter of fact, SGX uses
the SDK provided by Intel. ARM Trust Zone is typically available to only device manufacturers
and operating systems; OP-TEE [11] is an open-source TEE that implements the ARM Trust Zone
technology. AMD SEV can only be configured to protect whole Virtual Machine (VM) instances
through transparent memory encryption.

Besides the low-level SDKs provided by vendors, there are also several third-party frameworks
for developing TEE-enabled applications. The majority of these frameworks (e. g., SCONE,1

Gramine,2 and Occlum3) primarily aim to ease the development process by offering ready-to-use
containers, unikernels, libraries and runtimes that allow existing applications to run (almost)
unmodified. Other approaches, such as Google’s Asylo and Microsoft’s Open Enclave, focus
on portability, by offering an universal interface for cross-platform TEE offloading. The latter
approaches support cross-platform implementations, enabling the same implementation to run
over different hardware TEEs. For example, Open Enclave provides support for Intel SGX and
OP-TEE OS on ARM Trust Zone.

Developments/Extensions planned within EUPEX

Our approach will be based on Open Enclave SDK4 and focus on designing a fully-functional
key-value storage system that will be able to protect data from unwanted leaks. Key-value stores
are designed to provide fast access to data using a simple key-value lookup system and can
be useful for HPC applications that need to store and retrieve (i) large amounts of data quickly,
such as data for simulations or real-time analytics systems and/or (ii) metadata associated with
simulations or experiments, such as parameters, settings, or configurations. By implementing the

1https://scontain.com/
2https://gramineproject.io/
3https://occlum.io/
4https://openenclave.io/sdk/
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functionality of a key-value persistent store within TEE, our design will further provide protection
against security violations or attacks to compromise the stored data and the query operations.

Design Objectives. Even though TEEs aim to provide strong data protection during processing,
it is also equally important to guarantee that data remains well protected through their whole
life cycle, including when transiting over the network and when stored in main memory and/or
storage devices. One of the most effective ways to protect data is by using encryption, which
should be enforced end-to-end to the aforementioned phases (namely, transit phase, in-use
phase, and rest phase). We briefly describe each of them below:

Data in transit: The data is transferred over the network, in a client-server fashion (i. e.,
the client reads or writes key-value pairs on a remote server). In our case, the network is
considered untrusted, hence the connection should be encrypted. This can be performed at
different levels of the network stack, e. g., on application level by using SSL/TLS sockets, or
at the network level, by establishing IPsec or VPN channels between the nodes. Unlike the
traditional client-server architecture, in our case the operating system is also considered
untrusted, hence, the encrypted connection should terminate within the TEE. By doing so,
the data will only be decrypted within the protected space of the TEE, without being risked
to be leaked in the network or the operating system.

Data in-use: The data are protected during computation, using the hardware-based TEE
(e. g., Intel SGX, ARMTrust Zone, etc.). TEEs provide an isolated space that is not accessible
by other applications, the operating system, or even other hardware modules.

Data at rest: The storage devices typically reside outside the trusted domain, hence the
data should always be stored in an encrypted form. The encryption can be performed
transparently, at the block-level (e. g., similar to dm-crypt ), or at the application layer (e. g.,
similar to SQL TDE, etc.). In any case, it is necessary to redesign the data structures to
extend the trust to the untrusted storage medium, in order to achieve end-to-end security
properties between the TEE and the storage mediums.

Timeline for development and for the integration

M18 Analysis of different design choices and how these choices could affect the security
and performance of a TEE-based key-value storage system.

M36 Provide the final design of a confidential key-value storage system, built on hardware-
based trusted execution environment.

2.2.2 LLview

LLview5 is a software tool that provides comprehensive monitoring and reporting of clusters
that are controlled by a resource manager and a scheduler system. It includes an interactive
role-based web portal that displays the jobs, their allocation to resources and also performance
metrics obtained from other monitoring sources. The job reporting interface of the LLview web
portal, shown in Fig. 4, displays a list of the currently running jobs and their data and metrics,
updated every 1-3 minutes. LLview ensures that only previously existing data is collected from the

5https://apps.fz-juelich.de/jsc/llview/docu/
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FIGURE 4: LLVIEW WEB PORTAL DISPLAYING JOBS THAT RAN ON THE MONITORED SYSTEM. WHEN A JOB
IS SELECTED, SOME AVERAGED GRAPHS ARE SHOWN AT THE BOTTOM. DETAILED REPORTS IN
HTML AND PDF CAN BE ACCESSED FROM THE TWO RIGHTMOST COLUMNS.

system, such as the resource manager and existing daemons. Further sources may be installed
on the compute nodes with a minimal overhead to obtain metrics in the range of minutes.

The LLview Job Reporting web portal is the main entry point for users, project leaders, mentors,
and support members to access job-related monitoring data, according to pre-defined permis-
sions. The role-based access provides different levels of information that comprises: job list
tables containing their aggregated performance information, timeline graphs per job for the
key performance metrics, node-related monitoring data, a live view of the system (LLview client
panel, displayed on Fig. 5), queue information, and access to detailed job reports, including a
dynamic HTML and a PDF version.

Besides the Job Reporting infrastructure, LLview also contains an Interactive client, which is
a stand-alone application that can run on any Linux/Windows/MacOS system and shows the
current state of the monitored system. It includes a colour-coded list of the running jobs and
their distribution along with the racks and nodes, as well as a visual representation of the queue
state.

The LLview SQLite database files and the scripts for managing the databases, importing mon-
itoring data, and generating data for the web interface are located on service nodes of the
cluster. The configuration of the databases is done via configuration files in YAML-format. These
configuration files contain not only the definition of the databases and table structures, but also
rules to import and to aggregate and store the raw monitoring data into further tables.

In summary, LLview is an efficient tool that will provide a comprehensive monitoring and re-
porting interface for job-related information on the EUPEX Pilot for system administrators and
applications developers alike, with a user-friendly web portal and interactive client, using SQLite
databases, with YAML-format configuration files.

© Eupex. All rights reserved. Page 14 of 55
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FIGURE 5: LIVE VIEW OF THE DEEP SYSTEM IN LLVIEW, DISPLAYING A COLOR-CODED JOB LIST ON THE
RIGHT SIDE, THEIR DISTRIBUTION ON THE SYSTEM (BOXES ON THE LEFT) AND ON THE QUEUE
(BOTTOM LEFT).

Developments/Extensions planned within EUPEX

LLview is planned to be extended to make it easier to customise, adding new metrics or to adjust
what is displayed for the different user roles. Furthermore, the installation and configuration
process of LLview will be also made easier. These are important steps to setup and maintain a
monitoring infrastructure within EUPEX and other new systems, as well as to integrate relevant
metrics.

Timeline for development and for the integration

M18 Add interactive detailed report

Extend and simplify of how new metrics are added from ładaptersž

Create new ładaptersž to collect metrics from different sources (e. g., Prometheus)

M36 Create a simplified installation package (to be released Open Source) that can be
used to setup the monitoring infrastructure in new systems

Investigate the possibility of adding the package inside the Ocean project

© Eupex. All rights reserved. Page 15 of 55
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3 Execution Environment

The execution environment of the EUPEX software stack has to provide a coherent view on the
MSA system composed of strongly linked modules while enabling an efficient utilisation of its
resources. However, in contrast to the management stack mainly concerned with the demands
of the system operators, the execution environment also has to take the requirements of the
users and application developers into account. The goal is a flexible and efficient utilisation of
the available resources which is enabled by modularity awareness throughout the stack. This is
achieved by covering the following areas:

Programming models for system-wide programming,

Performance tuning,

Orchestration, and

Technologies for the exploitation of hardware capabilities.

3.1 Programming Models

The EUPEX platform aims at supporting a variety of different workloads, ranging from traditional
HPC codes with two-sided message-based communication to workflows spanning multiple mod-
ules and encompassing different programming paradigms. Therefore, we support a wide range
of programming models for system-wide programming, which are introduced in the following
sections.

3.1.1 ParaStation MPI

The ParaStation Modulo software suite features a versatile execution environment and runtime
called ParaStation MPI. This is especially designed for large-scale supercomputers following
the design principles of the MSA. Its node-local resource management component ParaStation
Management integrates seamlessly into the Slurm batch queuing system. This integration is
facilitated by the psslurm plugin directly interfacing with the central Slurm scheduling daemon
(slurmctld) by using the native Slurm protocol. In a ParaStation-based setup, the node-local
Slurm daemons (i. e., slurmd and slurmstepd) are replaced by the ParaStation Daemon (psid).
All psids on the system form a scalable network of process management daemons responsible
for process startup and control, intra-job resource assignment, and the proper cleanup after
job termination. ParaStation Management comes with comprehensive support for the PMIx
standardÐan emerging standard for process and resource management in HPC environments.
This way, all parallel runtimes supporting this interface can build upon portable and well-defined
access to commonly needed services such as process discovery and endpoint identification.

Therefore, the ParaStation MPI runtime supports PMIx as well, providing the execution of large-
scale MPI workloads on modular systems. This is an MPICH derivate (currently based on
the MPICH 4.1.1 release) and supports the most recent MPI-4 standard (cf. Fig. 7). Efficient
communication in MSA systems is enabled by its low-level, point-to-point communication library
pscom. This supports different interconnects and transport protocols common in HPC (e. g.,
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FIGURE 6: PARASTATION MODULO’S PROCESS MANAGEMENT AND ITS INTEGRATION WITH THE SLURM
WORKLOAD MANAGER.

InfiniBand (IB), Unified Communication X (UCX), Omni-Path Architecture (OPA), BullSequana
eXascale Interconnect (BXI), etc.) concurrently. This way, the computing processes automatically
choose the transport promising the best performance depending on their locality within the
system. Additionally, the pscom comes with support for network bridging. This even allows for
the execution ofmodularworkloads andworkflows in case of heterogeneous network landscapes,
i. e., the MPI processes are transparently presented a direct, virtual connection even if they are
located in different physical networks.

Developments/Extensions planned within EUPEX

Both the ParaStation MPI execution environment and its runtime will be adapted to the particu-
larities of the EUPEX platform. In the first step, compatibility with the compiler toolchain will be
ensured to create a first working environment. This is already possible on the EAP. Subsequently,
support for the target systems can be added which also includes:

Pinning strategies,

Efficient device-to-device communication, and

MSA support especially regarding the federated network.

Timeline for development and for the integration

M24 ParaStation MPI runtime available on the EAP

M32 Initial support for efficient device-to-device communication via BXI

M42 Final deployment and integration of MPI on the EUPEX platform
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LAYER (B) FOR AN INTEGRATION INTO THE GENERAL MPICH SOFTWARE STACK (A). (BASED
ON [12])

3.1.2 Atos Open MPI

Open MPI is an open-source implementation of the MPI standard developed and maintained
by consortium of academic and industry partners. As such, Open MPI proposes a production
quality software, deployed and used in many-large scale system including several of the TOP500
machines. In its current version 4, Open MPI implements the full MPI 3.1 standard using a
modular approach. This approach enables the coexistence of multiple implementations of
the same set of functionalities called modules and the selection at runtime of the module to
execute. It should be noted that the version 5 of the software is currently developed which
implements most of the MPI 4 standard, and is likely to be available in the EUPEX project time
frame. Atos proposes an implementation based on the Open MPI open source. The resulting
version extends the community one by supporting the BXI interconnect and by implementing
either new functionalities such as notified RMA or partitioned collective communications, or by
developing new implementation of existing functionalities, such as new methods for achieving
collective communications.

Overall Atos Open MPI support multiple interconnects such as IB using UCX or Atos BXI, and
it natively relies on PMIx for interfacing with the resource manager. While it already supports
the entire MPI-3.1 standard, it will implement MPI-4 specific API such as the MPI sessions in its
version 5. Atos Open MPI also provides several implementations of collective communications
targeting the MSA by using a hierarchical approach to take into account the topology of the ma-
chine. These implementations extend the existing Hierarchical AutotuNed (HAN) component of
the open source by providing n-levels topology support for MPI_Bcast, MPI_Gather, MPI_Allgather,
MPI_Reduce, MPI_Allreduce and MPI_Alltoall.
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Developments/Extensions planned within EUPEX

We will extend Open MPI within EUPEX to:

Support the EUPEX CPU and GPU

Provide efficient communication over the last BXI interconnect technology.

Timeline for development and for the integration

M36 Open MPI available on the EAP

M42 Support for efficient device-to-device communication via BXI

M48 Final deployment and integration of Open MPI on the EUPEX platform

3.1.3 GPI-2

GPI-2 [13, 14] is an implementation of the Global Address Space Programming Interface (GASPI)
which intends to be an API specification for the Partitioned Global Address Space (PGAS). The
main purpose of GASPI is to initiate the transmission from a bulk-synchronous massage-passing
based programming paradigm, to one that leverages asynchronous one-sided Remote Direct
Memory Access (RDMA) powered communication principles.

Developments/Extensions planned within EUPEX

Goethe University Frankfurt contributes a new communication backend for GPI-2 based on the
Portals4 API to provide direct support for the Bull eXascale Interconnect (BXI), i. e., native BXI
support for GPI-2. This work will be done in cooperation with the RED-SEA project by providing
access to an early prototype system, which is partially equipped with the latest BXI hardware
and software.

To be compliant with the overall MSA concept of the EUPEX Pilot system and to provide MSA
awareness for the GASPI programming model, Goethe University Frankfurt will collaborate with
the Fraunhofer Institute and the DEEP ś Software for Exascale Architectures (DEEP-SEA) project
to port a pscom-based backend for GPI-2.

In the final phase of the project, the focus will shift to implementing and investigating the usability
of direct accelerator communication with GPI-2 over BXI and pscom.

Timeline for development and for the integration

M24 Prototype implementation of the native BXI backend for GPI-2

M36 Open-source release of the BXI backend for GPI-2

M42 Prototype implementation of the pscom backend for GPI-2
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3.2 Performance Tuning

3.2.1 ACCO

Atos Collective Communications Optimizer (ACCO) is a tool for tuning Open MPI collective
communications. Open MPI includes multiple components for implementing collective com-
munications. The two main components developed by the community are łTunedž, the default
component used in OpenMPI version 4, and łHANž, the expected default component of OpenMPI
version 5. Both of these components implement several algorithms for each type of collective
communication. The performance of each of these implementations depend among other things
on the considered process deployment, interconnect, or message size to exchange. Thus both
łTunedž and łHANž provide the capability to select which implementation to use with a parameter.
Moreover, most of these algorithm implementations can be further tuned using parameters for
selecting for instance the segmentation size of messages, or the width of the topological tree.
Finding the best set of values for the different parameters for each collective communications
on each selected configurations and use cases can lead to better performance for an application.
ACCO aims at finding these values by running multiple time a micro-benchmark. It currently
provides 2 different methods: either by exploring the entire parameter space, which can be time
expensive, or by using black-box optimisation technique such as genetic algorithms.

Developments/Extensions planned within EUPEX

We will extend ACCO within EUPEX to:

Support the tuning over the EUPEX architecture

Support the tuning of application’s communication when using Open MPI

Support the tuning of collectives when training deep learning Artificial Intelligence model
using Horovod

Timeline for development and for the integration

M36 ACCO available on the EAP

M42 Support tuning applications’s communication

M48 Final deployment and integration of ACCO on the EUPEX platform

3.2.2 BHCO

BHCO aims at accelerating MPI + Open Multi-Processing (OpenMP) applications. The main tool
included in BHCO targets the progress of MPI communication during an OpenMP computation.
When writing a MPI + OpenMP application, it is quite common to decompose this application in
such a way that a non blocking MPI communication is called right before entering a computation
parallelized with OpenMP with the hope to overlap both communication and computation. In
such case, a MPI call is introduced after the completion of the OpenMP section to complete
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the communication. Unfortunately as both OpenMP and MPI runtime are separated libraries
that do not interact with each other, the MPI communication progression while the application
has entered OpenMP cannot be ensured and the transfer actually happens in the completion
call, thus inducing no real overlap. A possible way to solve this issue consists in keeping a
MPI thread running which will progress this communication, but which also will interfere with
the computing OpenMP threads and thus impact the performance. With BHCO, using OMPT, a
progression task will be called by an OpenMP thread that reached the end of its computation
while waiting for the other threads to finish their computation. This progress task is specific to
the Open MPI implementation. As this is done through OMPT, there is no need to modify the
code of an application to benefit from this solution.

Developments/Extensions planned within EUPEX

We will extend BHCO within EUPEX to support the new EUPEX CPU

Timeline for development and for the integration

M36 BHCO available on the EAP

M48 Final deployment and integration of BHCO on the EUPEX platform

3.2.3 libVC

libVersioningCompiler [15] a dynamic optimisation library designed to reduce the HPC expertise
skill gap required to build efficient HPC applications, by providing a simple and efficient way to
dynamically optimise kernels. It provides a set of APIs to perform runtime optimisations on C/C++
code. libVersioningCompiler is organised in the following main high-level components: Version,
which represents a compute kernel to provide symbols ready to be executed; Option, which
represents each of the flags and parameters that are passed to libVersioningCompiler in order
to compile a version of a computing kernel. Compiler, which defines the interface that compiler
implementationsmust comply with to be used with libVersioningCompiler. Utils, which includes a
set of utility functions that are being used to have a ready-to-use library. The libVersioningCompiler
library was initially developed for LLVM 6 as part of the ANTAREX FETHPC project. In EUPEX, it
was updated to support the latest three major releases of LLVM (13, 14, and 15). The code has
been further updated to leverage the C++17 standard. The original work libVersioningCompiler
was intended to work with C/C++ kernels only. The EUPEX version now supports kernels in
any language that provides ABI compatibility with C (for EUPEX and, more in general, HPC
workloads, this is particularly important as the extended version is now able to work with Fortran
kernels). Finally, to address those HPC use cases, we have developed an implementation of
libVersioningCompiler that leverages a distributed network to fetch optimised kernels when
available. The primary goal of this implementation is to provide easy-to-scale optimisation
capabilities as needed. For example, a small and scalable set of computing nodes may be
used to compile optimised versions of the kernel, allowing the rest of the nodes to work with
the optimised version of the function. Our implementation is designed to be extremely flexible,
allowing users to customise the network stack for both the DHT and the serving/download
process. To achieve this, we have implemented the download mechanism using ZeroMQ, which
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provides fast communication channels and supports multiple network stacks. To allow the
distribution of available versions’ sockets, we use a distributed hash table (DHT). Its structure
allows the coordination of multiple code producers and consumers, while remaining highly
flexible with nodes joining and leaving the network. The DHT network we are using is based on
a Kademlia DHT implementation called OpenDHT. To drastically reduce the overhead caused
by the openDHT setup and configuration, our implementation uses elliptic curve (EC) based
cryptographic identities. All the proposed extensions have been released to the original open
source project.1 EUPEX application codes can therefore leverage libVersioningCompiler to
generate and run multiple versions of a given kernel, with different optimization options. An
example of integration for a given function FUNCTION_NAME defined in file FILENAME_SRC is
provided herebelow, using the libVersioningCompiler high-level interface.

We need to include the libVersioningCompiler header file:

#include "versioningCompiler/Utils.hpp"

Then, we initialize the library by calling once, on setup, the following method:

vc::vc_utils_init();

Once the library is set up, for every desired Version object, we can create the corresponding
compiled code:

vc::version_ptr_t v = vc::createVersion(FILENAME_SRC,
FUNCTION_NAME,
{vc::Option("O", "-O", "2"), ... }
);

signature_t fn_ptr = (signature_t) vc::compileAndGetSymbol(v);
if (fn_ptr) { // check if correctly compiled and loaded symbol
fn_ptr(42); // run the compiled function version

}

It is also possible to perform split-compilation, by precompiling the LLVM-IR, as well as other
complex compilation policies by leveraging a finer-grained API that is described in full in the
libVersioningCompiler documentation. The abovedescribed high-level API is however sufficient
for the majority of use cases.

3.3 Orchestration

3.3.1 StreamFlow

StreamFlow [16] is a Workflow Management System (WMS) able to orchestrate topology-aware
workflows on top of hybrid and heterogeneous infrastructures (e. g., cloud+HPC or MSA). Indeed,
StreamFlow has been designed around two main principles. First, it supports task executions
in multi-container environments, targeting complex microservices architectures in the cloud.
Second, it relaxes the requirement of a single shared data space, automatising cross-stack data
movements over hybrid infrastructures. StreamFlow exposes a fully declarative interface to
model hybrid workflows. In particular, it relies on the Common Workflow Language (CWL) open

1https://github.com/skeru/libVersioningCompiler
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FIGURE 8: STREAMFLOW FRAMEWORK’S LOGICAL STACK

standard for describing steps and their dependencies and on a YAML-based configuration file
for defining the available execution infrastructures and binding each step to a proper execution
location. A declarative approach allows a clear separation between the host code (e. g., an MPI
application or a TensorFlow script), the coordination between different steps, and their offloading
to different infrastructures (e. g., a Kubernetes-based cloud environment or a Slurm-managed
HPC facility). Plus, the StreamFlow plugin system enables a straightforward introduction of new
deployment methods and seamlessly porting existing workflows onto them.

This task aims to integrate MSAs as first-class citizens in the StreamFlow ecosystem, making it a
proper tool for rapid prototyping workflows of legacy applications onto the MSA infrastructure. In
detail, we contribute a new StreamFlow plugin capable of exploiting MSA awareness to improve
the performance of heterogeneous HPC workflows. This approach has two main advantages.
First, users can evaluate MSAs without modifying and recompiling the host code. Second,
application-specific and architecture-specific optimisations can be introduced at the plugin level
without modifying the StreamFlow core codebase. Plus, introducing MSAs in the StreamFlow
ecosystem makes it straightforward to evaluate their usage in combination with more standard
execution infrastructures, e. g., multi-MSAs or cloud+MSA. With these features, StreamFlow will
become an integral part of the EUPEX software stack, providing an efficient and innovative way to
manage workflows in large-scale MSA systems. At the same time, integrating other tools in the
stack will bring even more benefits in terms of expressive power and performance optimisation.
For example, the integration with CAPIO (see Sec. 5.1.1) will enable transparent streaming I/O
capabilities in distributed workflows.
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Timeline for development and for the integration

M18 Open source release of StreamFlow 0.2.0, with enhanced support for third-party
plugins and more flexible configuration of HPC execution environments;

Collection of application requirements in terms of workflow patterns and performance
optimisation.

M36 Open source release of the StreamFlow MSA plugin, fully integrated in the EUPEX
software stack;

Open source release of the StreamFlow integration with CAPIO.

3.4 Exploitation of Hardware Capabilities

The performance ofmodern computing platforms comeswith an increasing hardware complexity.
Many resources of many different kinds are used, with complex interconnection between them,
making data movement an expensive constraint. Hence it is important to optimise the software
so as to properly exploit all the capabilities of the hardware. We describe in this section how
several software components will contribute to a better utilisation of the EUPEX pilot.

3.4.1 xHC

Modern HPC nodes comprise high core counts and are able to host tens to hundreds of processes.
Moreover, they contain elaborate internal topologies, consisting of multiple sockets, NUMA
domains and cache hierarchies. As a result, communication between different pairs of cores
takes place over paths of different costs (e. g., over a shared last level cache, inside or outside
a NUMA node, between different sockets). Thus, the performance of collectives at the intra-
node level is level is crucial, but faces several challenges. In this task, we contribute a new
component for collectives in OpenMPI: XPMEM-based Hierarchical Collectives (XHC). XHC
provides optimised intra-node collectives to ad-dress these challenges of modern nodes. Within
the scope of the project, XHC will provide an im-plementation for at least one indicative operation
from each category of collectives: broadcast (one-to-all), reduce (all-to-one), and allreduce &
barrier (all-to-all). All collective primitives offered by XHC share the following characteristics: (a)
topology awareness, (b) single-copy or shared-memory-based transfers, (c) direct implementation
over memory, i. e., not based on the point-to-point layer, and optionally (d) cache coherency
protocol awareness. Several optimisations for improving the performance of baseline primitive
implementations are planned, including:

Uniformly distributing reduce and allreduce operation load among all available ranks.

Using dynamic leadership to mitigate the effects of late rank arrivals.

Advanced tuning of algorithms and features, across different levels of the hierarchy.

Examine optimised access patterns for shared control structures.

Explore the benefits of algorithms combining both flat and hierarchical communication
patterns for different phases of the same operation, for all-to-all primitives.
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XHC focuses on and only handles the intra-node aspect of collectives. For the inter-node part,
our goal is to integrate XHC with OpenMPI’s HAN. This requires the introduction of various
changes and optimisations on either of the two sides, in order to achieve seamless and efficient
operation.

Timeline for development and for the integration

M18 Open source release of XHCv2: https://eupex.eu/sw-environment/sw-environment-execution-
environment

Optimisations for collectives

Analysis of cache coherence protocol implications

M36 Open source release of XHC v3

Optimisations for primitives and performance profiling on arm64

Integration and evaluation of XHC+HAN

3.4.2 hwloc (Portable Hardware Locality)

The open-source project hwloc [17, 18] is the de-facto standard tool for discovering the resources
in computing platforms (processors, cores, NUMA nodes, I/O devices) as well as their organisa-
tion and locality (which resources are close or far away from each other, which memory is local
to which CPUs etc). This knowledge is critical to HPC nowadays because because the placement
tasks and buffers has a critical impact on performance on complex architectures (cores must be
close the data they manipulate, to resources to they work with, etc). In the context of this project,
several software layers will rely on hwloc. For instance MPI implementations (Section 3.1.2) and
the XHC component (Section 3.4.1) will get information on the machine’s hardware topology and
memory hierarchy from hwloc.

hwloc already supports a long list of platforms and architectures, including some ARM platforms,
but hardware availability is limited. The diversity of ARM implementations sometimes require
updates in the hwloc code. hwloc also supports heterogeneous memory [19, 20]. However
this kind of heterogeneity is still rare and was only recently supported by the ACPI hardware
specification and the Linux kernel. Hence some hwloc updates might be required when new
implementation such as the EUPEX pilot are tested.

hwloc gathers the relevant information from the operating system APIs and hardware tables.
Hence one critical part of our work in this project is first to make sure the Linux kernel and the
ARM firmware expose extensive (and correct) hardware information. We are working towards
this goal with ARM vendors, especially regarding ACPI tables. For instance, exposing the PPTT
table is required for CPU topology while the HMAT table is required for heterogeneous memory
information. Once this information is populated in the firmware, a recent Linux kernel will
expose it to user-space and existing hwloc releases should be able to expose the corresponding
information to runtimes and applications. If the information is missing in hardware, hwloc still
has the ability to hardwire information for a specific platform.
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Timeline for development and for the integration

M18 Release 2.9 of hwloc is compatible with the most popular ARM platforms and has
support for heterogeneous memory.

M36 Release 3.x of hwloc exposing all CPU and memory details of the EUPEX pilot hard-
ware.

3.4.3 TeraHeap

TeraHeap, is a system that eliminates Serialisation/Deserialisation overhead and expensive
garbage collection in managed runtime systems, such as the JVM, for applications that require
large address spaces. TeraHeap relies on three concepts. (1) It eliminates S/D cost by extending
the managed runtime (JVM) to use a second high-capacity heap (H2) over a fast storage device.
(2) It offers a simple hint-based interface, allowing big data analytics frameworks to leverage
knowledge about objects to populate H2. (3) It reduces GC cost by fencing the garbage collector
from scanning H2 objects whilemaintaining the illusion of a singlemanaged heap. We implement
TeraHeap in OpenJDK and evaluate it with 15 widely used applications in two real-world big data
frameworks (Spark and Giraph). Our evaluation shows that for the same DRAM size, TeraHeap
improves performance compared to native execution, while it provides similar performance
when using significantly less DRAM.

Timeline

M18 First version of TeraHeap is available as open source: https://eupex.eu/sw-environment/
sw-environment-execution-environment

M36 Porting to Java 17 and optimisations.

3.4.4 KNoC/Knot

Cloud and HPC increasingly converge in hardware platform capabilities and specifications, never-
theless still largely differ in the software stack and how it manages available resources. The HPC
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world typically favours Slurm for job scheduling, whereas Cloud deployments rely on Kubernetes
to orchestrate container instances across nodes. Running hybrid workloads is possible by using
bridging mechanisms that submit jobs from one environment to the other. KNoC (Kubernetes
Node on Cluster) is a virtual node (kubelet) for Kubernetes that transparently manages the con-
tainer lifecycle on a remote HPC cluster using Slurm for scheduling and Singularity/Apptainer as
the container runtime. In the initial implementation, the Kubernetes installation hosting the KNoC
node may run locally to the user (in a simple virtual machine), or even in a łsidecarž environment
offered by the HPC centre. In the second iteration of KNoC, we explore a design that runs all
Kubernetes components (including the special kubelet) within HPC. KNoC provides users with an
effective way to utilise resources by a combination of well-known tools, APIs, andmore interactive
and user-friendly interfaces as is common practice in the Cloud domain, as well as seamlessly
combine Cloud-native tools with HPC jobs in converged, containerised workflows. To simplify
the deployment of such Cloud-native components we use Knot. Knot is a full-featured software
stack for facilitating data science in Kubernetes, by integrating a web-based environment that
includes an extensible set of productivity tools and services. At its core, the Knot dashboard
supplies the landing page for users, allowing them to design workflows (using the popular Argo
Workflows language), and specify execution parameters through a user-friendly inter-face.

Timeline

M18 First version of KNoC/Knot is available as open source: https://eupex.eu/sw-environment/
sw-environment-execution-environment

M36 Second version of KNoC with support for containerised workflows on HPC
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4 Tools for Performance and Energy Efficiency

Power-management, energy-efficiency, and performance optimisation are key aspects to ac-
count for on the road to Exascale. The software stack needs to provide tools for the application
developers and the system-manager to (i) monitor and profile the power/energy consumption,
and the performance bottlenecks of the application runs; and (ii) when the application faces
performance bottlenecks to leverage the HW power management knobs to reduce energy con-
sumption automatically, and to support the programmer for semi-automatically tuning of the
application kernels and power-management knobs. Moreover, the software stack needs to be
adapted to the EUPEX Pilot innovations and characteristics, namely: the Modular System Archi-
tecture (MSA), the Sipearl Rhea architecture and power management knobs, and the application
characteristics. It will also integrate with the best-in-class European technologies developed in
the H2020 FETHPC and EuroHPC01 projects.

4.1 Energy monitoring and power management

4.1.1 BEO

BEO (Bull Energy optimizer) is a tool for monitoring the power, energy, temperature and perfor-
mance of the whole cluster infrastructure. Based on out-of-band monitoring through standard
protocols (IPMI, SNMP, Redfish) and in-band monitoring (BDPO) and on a consolidated and dis-
tributed database, BEO can provide energy related insights without instrumentation. Connected
with a system manager, BEO can provide detailed accounting metrics for a given job. BEO is
able to set a power limit (power capping) for the whole cluster infrastructure or a subset of the
cluster. BEO will ensure that the limit will not be overpassed. BEO can be easily extended to
support any additional hardware. BEO contains secured (OpenID connect, LDAP compatible)
interfaces: CLI, Rest API (OpenAPI specification) and customisable web user interface intended
for system administrators and end users.

Timeline

M36 Full support of SiPearl Rhea nodes (metrics and Power capping).

Power capping feature adaptation to take the benefit from low level firmware services
developed in WP4 by CINI (Pulp ś Specific HW card to manage Power).

4.2 Energy efficiency runtime systems

4.2.1 MERIC

The open-source (BSD-3 licence) runtime system MERIC [21] developed by IT4Innovations is
designed to minimise the energy consumption of the HPC infrastructure executing a parallel
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application by dynamic tuning a wide range of hardware knobs. The methodology of dynamic
tuning comes from the Horizon 2020 project READEX [22] under which the development of the
MERIC has started. The library and associated tools perform a detailed analysis of complex
application behaviour, identification of the optimal hardware settings concerning energy con-
sumption and runtime, and dynamic tuning during the application runtime. The output of an
application analysis is possible to visualise using the RADAR visualiser [23].

In the reported period of the EUPEX project, support for A64FX energy measurement was
implemented to provide energy-efficiency analysis of applications executed on the EUPEX Alfa
Pilot platform (EAP). We have identified a list of power management knobs that A64FX suppose
to implement, based on publications of RIKEN experts [24]. Unfortunately, support for tuning
these knobs has not been implemented, since the CEA Irene administrators have not found a safe
way how to expose them to userspace. However, Rhea will use a different power management
interface (SCMI [25]) and therefore this limitation is not critical. Additionally, EUPEX applications
can be tested for usage with MERIC on EUPEX in-kind systems that provide according hardware
support (e. g., the Karolina EuroHPC Petascale system).

Timeline

M24 EUPEX Alpha Pilot platform user guide for energy measurement using MERIC.

MERIC-COUNTDOWN cooperation: providing energy measurement performed by
MERIC to COUNTDOWN.

Implement MERIC support for SCMI power governor used by Rhea CPU.

4.2.2 COUNTDOWN

COUNTDOWN is a methodology and a tool for identifying and automatically reducing the fre-
quency of the computing elements in order to save energy during communication and synchro-
nisation primitives. COUNTDOWN is able to filter out phases which would detriment the time
to solution of the application transparently to the user, without touching the application code
nor requiring recompilation of the application. Besides its primary use as an energy-saving
framework, COUNTDOWN can be a powerful monitoring tool as it allows us to track and record
low-level commands of the parallel application. This then allows a granular monitoring and
performance analysis of the application running on specific hardware.

In EUPEX, COUNTDOWN will have two principal uses: 1) it will be used as an energy-saving
framework which reduces the CPU frequency during the communication and synchronisation
phases of the parallel application, and 2) it will be used as a granular monitoring tool that will
give us more insights into the performance of applications running on pilot hardware.

Timeline

M24 EUPEX Alpha Pilot platform user guide for COUNTDOWN.

Integrate COUNTDOWN-MERIC cooperation: integrate in COUNTDOWN energy mea-
surement collected by MERIC.
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M36 Implement COUNTDOWN support for SCMI power governor used by Rhea CPU.

4.2.3 BDPO

BDPO is a lightweight daemon executed on each compute node which leverages fine-grain
monitoring of CPU-centric metrics such as the IPC (number of retired instruction per reference
clock cycle of the processor) to determine if the executed parallel application requires a lot of
computational power or if it is partially, nay heavily, stalling. When such a portion of execution,
which is called a łphasež afterwards, is detected, BDPO lowers the frequency and voltage of the
processors on-the-fly, which notably allows to decrease their power consumption at the cost
of some performance degradation (the more stalling the processors, the more negligible the
induced performance degradation). When detecting a compute-intensive phase, BDPO resets the
voltage and the frequency of the processors to higher values, if necessary. By doing so, BDPO
aims at optimising the energy-efficiency associated with the execution of HPC applications by
leveraging their stall-intensive phases, while having an impact as insignificant as possible on the
associated performance.

Timeline

M24 Integration of BDPO with the EUPEX’s selected job scheduler for automatic start and
stop.

M36 Integration with MERIC especially for user-marked regions of interest.

4.3 Performance Tools

4.3.1 Score-P

The Score-P measurement infrastructure [26, 27] is a highly scalable and easy-to-use tool suite
for profiling and event tracing of HPC applications. Score-P offers the user a maximum of
convenience by supporting a number of analysis tools. Currently, it works with Cube, Scalasca,
Vampir [28], Tau [29], and Extra-P [30] and is open for other tools. Score-P comes together
with the new Open Trace Format Version 2 [31], the Cube4 profiling format [32] and the Opari2
instrumenter for OpenMP applications. Score-P instrumented applications capture events from
various sources (MPI, threads, GPUs, I/O, source code, interrupts, Hardware counters [33]),
augment them with timestamps and hardware counters before passing them to profiling and
tracing backends (see Figure 10).

Score-P is available under the 3-clause BSD Open Source license [34].
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FIGURE 10: SCORE-P COMPONENT ARCHITECTURE

4.3.2 Scalasca

The Scalasca Trace Tools [35, 36, 37] are a collection of trace-based performance analysis
tools that have been specifically designed for use on large-scale systems featuring hundreds of
thousands of CPU cores, but also suitable for smaller HPC platforms. A distinctive feature of
the Scalasca Trace Tools is its scalable automatic trace-analysis component which provides
the ability to identify wait states that occur, for example, as a result of unevenly distributed
workloads. Especially when trying to scale communication intensive applications to large process
counts, such wait states can present severe challenges to achieving good performance. Besides
merely identifying wait states, the trace analyser is also able to pinpoint their root causes
(i. e., delays) [38], and to identify the activities on the critical path of the target application [39],
highlighting those routines which determine the length of the program execution and therefore
constitute the best candidates for optimisation.

Scalasca is available under the 3-clause BSD Open Source license [40].

Timeline

M24 Score-P and Scalasca ported to EUPEX Alpha Pilot platform and adapted to platform
compiler, MPI libraries, and power hardware counter interface.

© Eupex. All rights reserved. Page 31 of 55



D5.1 ś Software Specification
1.0 ś Final European Pilot for Exascale

EUPEX Alpha Pilot platform user guide for performance analysis using Score-P and
Scalasca.

M48 Score-P and Scalasca ported to EUPEX Pilot platform and adapted to platform com-
piler and MPI libraries.

Score-P and Scalasca integrated in EUPEX Software Stack

4.3.3 Cube

The Cube Software Framework [41] facilitates the collection, processing, and analysis of ap-
plication performance profiling data from Score-P and Scalasca. With this framework, users
have access to a comprehensive set of tools for measuring and understanding application
performance.

Cube (CUBE Uniform Behavioral Encoding) is suitable for analysing a wide variety of performance
data for parallel programs including MPI and OpenMP applications. Cube has been designed
around a high-level data model of program behaviour called the cube performance space. The
Cube performance space consists of three dimensions: ametric dimension, a programdimension,
and a systemdimension. Themetric dimension contains a set ofmetrics, such as communication
time or cache misses. The program dimension contains the program’s call-tree, which includes
all the call paths onto which metric values can be mapped. The system dimension contains the
components executing in parallel, which can be processes or threads depending on the parallel
programming model. Each point of the space can be mapped onto a number representing the
actual measurement for metric while the control flow of process/thread was executing call path.
This mapping is called the severity of the performance space.

The display component CubeGUI can load such a file and display the different dimensions of the
performance space using three coupled tree browsers. The browsers are connected in such a
way that you can view one dimension with respect to another dimension. For an example, see
Figure 11.

Cube is available under the 3-clause BSD Open Source license [42].

Timeline

M24 Cube ported to EUPEX Alpha Pilot platform and adapted to platform compiler.

M48 Cube ported to EUPEX Pilot platform and adapted to platform compiler.

Cube integrated in EUPEX Software Stack
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FIGURE 11: CUBEGUI RESULT DISPLAY OF A MEASUREMENT OF THE CESM SEA ICE CODE EXECUTING ON
4096 PROCESSORS.

4.3.4 ParaStation MPI

The ParaStation Management will be used to collect and forward node-local accounting in-
formation such as performance and energy counters. The main daemon psid is enriched by
various plugins extending its functionality. The accounting facility in psid is provided by the
psaccount plugin. psaccount is responsible for collecting and aggregating accounting data. The
flexible design of psaccount allows for easy integration of new data sources on the compute
nodes. The data collected from a compute node will be forwarded to the mother superior and
further aggregated. The psslurm plugin will fetch the collected data for each job and step from
psaccount and re-package it in the corresponding Slurm RPCs, which will be send to the Slurm
scheduling daemon (slurmctld).

4.4 Hardware requirements on the EUPEX Protopype

Exposing hardware performance counters ideally via PAPI and/or perfctr.

Energy consumptionmeasurement exposed to userspace, 1 kHz and higher power sampling
frequency preferred.

Write permission on relevant hardware power management interfaces.
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4.4.1 Energy tools specification initiative

Following the outcomes of the face to face meeting in Zagreb mid February 2023, an initiative to
create a working group for energy tools specification has materialised. Composed of volunteers
from several WPs (4, 5, 6), the group aims to define the contours and specifications of a suite of
tools to accurately report the energy consumption of the application phases and components of
the supercomputer, but also to implement the means to undertake an optimisation process. In
order to achieve this, it is essential to determine upstream the functionalities and the nature of the
information to be implemented on the pilot system. This concerns in particular a way of exposing
hardware performance information for collection and the functionalities of components steering.
The objective of the working group is to define as precisely and realistically (i. e., achievable in
the EUPEX project context) as possible, the specifications of the pilot system in this domain.
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5 I/O Stack

The role of T5.4 is to provide an advanced I/O software stack for the EUPEX Pilot, which meets
the requirements of the Modular Supercomputing Architecture (MSA) [1]. In addition to giving
access to files through a shared file system, many middlewares will provide applications and
workflows with a tiered storage environment offering higher level features.

The components of the I/O stack are split into 4 categories:

An In-Memory tier, providing data coupling in workflows

A high performance tier, providing ephemeral I/O services;

A set of application specific interfaces,

A set of tools and interfaces, enabling in depth analysis of the applications and workflows
I/O behaviour, and I/O optimisation libraries

The main effort in T5.4 will be about the integration of these bits into a coherent and efficient
I/O stack for the EUPEX Pilot. The 4 next sections contain a description of the components in
each category.

5.1 In-Memory Tier

5.1.1 CAPIO

CAPIO (Cross-Application Programmable I/O1) is a user-space middleware capable of trans-
parently injecting I/O streaming capabilities into file-based token-pushing workflows that com-
municate through files without modifying their original code. The primary objective of CAPIO
is to boost the performance of existing scientific workflows by improving the computation-I/O
overlap without modifying the business code of workflow components.

As sketched in Figure 12, the CAPIO middleware is logically composed of two main software
layers:

At a higher level, a coordination model that allows the user to express relaxed token syn-
chronisation semantics between producer-consumer steps of a workflow through an I/O
coordination language (currently leveraging the JSON format) describing when a file is
łfireablež (i. e., when its content can be accessed) and when a file is łcommittedž (i. e., when
it is completed, and no more I/O operations will be performed on it).

At a lower level, CAPIO provides a runtime system composed of a set of per-node user-
space servers implementing the distributed data and metadata storage for the files, and
an intercept library that must be dynamically linked (through the LD_PRELOAD environment
variable) to the application steps to intercept file system POSIX system calls executed on
a pre-defined CAPIO directory (i. e., the CAPIO mount point for the local node).

1https://github.com/alpha-unito/capio
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FIGURE 12: LOGICAL ARCHITECTURE OF THE CAPIO MIDDLEWARE.

The CAPIO coordination model allows the user to write a configuration file enabling the CAPIO
runtime to optimise file data movements between workflow steps and transforming their execu-
tion from a batch execution to a streaming one according to the annotated semantics provided
by the user through the configuration file.

5.1.2 Damaris

Damaris is a middleware for asynchronous I/O, data analytics and visualisation, targeting large-
scale MPI-based HPC simulations. It enables the use of dedicate cores or dedicated nodes for
asynchronous I/O and has an emphasis on ease of integration in existing simulations through a
simple API, efficient resource usage (with the use of shared memory) and simplicity of extension
through plug-ins.

Typical HPC simulations loop through a series of iterations, generating a large volume of data
at the end of each iteration and as a result they trigger a heavy I/O burst at the end of each
iteration. In the usual approach, output data is saved and are then transferred to an auxiliary
post-processing platform for analysis and visualisation. The mentioned data transfer is costly,
and no output is available until the end of the post-processing analysis and visualisation phase.
The burst I/O pattern can lead to variability in performance and execution time, known as jitter.
Damaris mitigates these issues by allowing asynchronous data I/O or processing on dedicated
hardware as the data is produced. This kind of processing is termed in situ processing (for
processing on dedicated in-node resources) or in transit processing (for processing on separate
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nodes). Damaris has been shown to reduce jitter and hide latency due to I/O, which leads to
improved scalability of computational codes.

Available plugins

CAPIO comes with the following set of plugins, that can be optionally compiled, serving various
processing requirements:

HDF5 output in file-per-core and collective mode (using MPI-I/O);

Python based analytics;

Paraview in situ visualisation;

VisIt in situ visualisation;

Ascent in situ visualisation (currently through the Python interface).

Software and runtime constraints

For use of Damaris, an application must have a few prerequisites and constraints placed on
its runtime. Damaris requires that an HPC simulation is able to specify the use of a different
MPI communicator than MPI_COMM_WORLD for its MPI based communications. The number of
simulation ranks has to be perfectly divisible by the number of Damaris ranks (per node), or, the
number of simulation nodes has to be perfectly divisible by the number of Damaris dedicated
nodes. For improved runtime the time taken for I/O processing should be shorter than the time
between I/O output stages.

Timeline

M18 Compilation and test suite on ARM A64FX

Development of testing suite covering Damaris dependencies.

Present Damaris to potential WP3 use cases.

Using EuroHPC ACROSS project use-case (OPM Flow) as benchmark.

M36 Running on Rhea nodes.

Compilation and test suite execution.

Integration of Damaris API with selected WP3 use case (if one found)

Benchmarking using OPM Flow.
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5.2 High Performance Tier

The High Performance tier is based upon specific łdata nodesž inserted in theMSA architecture to
serve as a fast data storage space for applications and workflows. Data nodes are connected to
one or more modules on their high speed interconnect, and contain enough NVMe disks to have
a read and write I/O bandwidth similar to the interconnect in order to be non blocking. Ephemeral
I/O services will be launched upon request to enable data exchanges between workflow steps
without involving long term storage.

FIGURE 13: MSA AND DATA NODES

5.2.1 KV Store

FORTH’s KV store consists of two subsystems: Parallax [43] and Tebis [44].

Parallax is an LSM KV storage engine that increases system efficiency by categorizing KV
pairs according to their size into three size-based categories (small, medium, and large)
and applying different policies in each category.

Tebis (Figure 14) is a distributed Key Value (KV) store designed for flash storage devices
(NVMe SSDs) and RDMA networks. Tebis consists of a highly available metadata server
and data servers, as shown in Figure 1. Each data server organises the data stored in its
flash devices using the Parallax KV storage engine. The metadata server keeps the key
ranges that each data server is responsible for and monitors the health of data servers.
In case of a failure, the metadata server starts the recovery protocol of the system to a)
reassign regions of the faulty data server and b) create extra replicas for recovery purposes.

Placement

The KV store can be deployed either in the storage nodes or the compute nodes to offer a KV
abstraction over shared or private storage devices. Note that even when the KV store runs on the
compute nodes, it still offers a global storage address space that is accessible from all compute
nodes.
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FIGURE 14: TEBIS DISTRIBUTED KV STORE ARCHITECTURE

Benefits

HPC applications, such as mesh solvers, that generate intermediate data that do not fit in
memory can benefit from using the KV store service in the following way. The KV store enables
applications to split their dataset into variable-size chunks to match the machine’s capabilities
without hurting performance. KV store can ingest data at a constant rate regardless of I/O sizes
and b) can serve read I/O requests with a single I/O operation from the device.

Offered API

Applications can use the Tebis KV store either 1) through its native key-value API or 2) through
HDF5 API. Tebis offers a Virtual Object Plugin interface for seamless integration of HPC applica-
tions that use HDF5.

Timeline

M18 First version of KV store available as open source: https://eupex.eu/sw-environment/
sw-environment-storage-architecture

M36 Optimisations for reduced I/O latency.

5.2.2 Memory-Mapped I/O

Memory-mapped I/O (mmio) allows applications to transparently access data in storage devices
via the page-fault mechanism, using processor load/store instructions. mmio has the potential to
(a) eliminate modifications to applications for handling and processing large datasets by merely
extending their heap over fast storage devices and (b) provide attractive abstractions for an
application to control its I/O path over a unified data representation. Despite these advantages,
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FIGURE 15: FASTMAP (XMAP) DESIGN OVERVIEW.

mmio has significant limitations that make it less attractive. In this work, we first analyse the
current limitations of mmio. Then, we design xmap (Figure 15), an extension of FastMap for the
Linux kernel, which addresses these limitations. The main contributions of xmap are support
for transparent huge pages over block-based storage and asynchronous promotions. To our
knowledge, xmap is the first system that provides this support for the Linux kernel. We evaluate
xmap with a variety of graph processing workloads using Ligra, an in-memory graph processing
framework, by transparently extending its heap over storage with no code modifications. Our
results show that when processing graph datasets 6-8× larger than the available system DRAM,
xmap outperforms Linux mmap by up to 3.5×, reduces total page faults by up to 265×, decreases
CPU system time by up to 90%, and increases CPU user time by up to 250%.

Placement

FastMap/xmap is placed in the storage nodes and can support any storage services that require
or can make use of memory-mapped I/O. xmap can also be used in compute nodes, if HPC
applications make use of memory-mapped I/O over privately allocated (not shared) storage.

Benefits

FastMap/xmap eliminates the cost of hits in the I/O cache by using the virtual address translation
layer in the CPU. As such, it reduces the cost of the I/O cache. In addition, xmap uses hugepages
transparently, reducing both the cost of I/O and the use of the TLB for applications that use large
amounts of I/O.
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Offered API

FastMap/xmap uses the regular Linux kernel interface (mmap) for memory-mapped I/O.

Timeline

M18 First version of xmap is available as open source: https://eupex.eu/sw-environment/sw-
environment-storage-architecture

M36 Policy optimisations for hugepages in xmap.

5.2.3 IO-SEA Ephemeral I/O Services

The Atos(Eviden) Flash Accelerators product is being extended in the IO-SEA project to become
the run time environment of the data nodes. It provides ephemeral I/O services to workflows.
Performance and activity metrics are collected to let users analyse the performance gains and
the data movements savings. Health checking is also being added in order to make the solution
robust against hardware failures.

The second piece of the IO-SEA solution is the Workflow Manager. It is in charge of user
interaction through a set of commands. Ephemeral Services are made available to users within
sessions. Workflows steps and I/O Ephemeral Services are described in a YAML file (theWorkflow
Description File) that is used to start a session (i. e., create the Ephemeral Services), then submit
steps as needed (i. e., configure the selected compute nodes to set up access to the needed
Ephemeral Services) until the session is stopped (i. e., terminate the Ephemeral Services and flush
data to long term storage). The Workflow Manager processes the user commands, manages
data nodes resources and orchestrates the deployment of Ephemeral Services.

Within EUPEX, the IO-SEA stack will be ported on the Rhea environment and the FORTH’s KV
Store will be integrated as an additional Ephemeral Service.

Timeline

M30 Compilation and preparation of the ARM A64FX environment

Porting of the IO-SEA solution on ARM

Work with WP3 use cases to create their workflow description files.

integrate KV Store as an Ephemeral Service

M36 Running on Rhea nodes.

Deployment of the IO-SEA Stack on the prototype.

tests of the KV Store

tests with WP3 use cases
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5.3 Application Specific Interfaces

The ECMWF domain-specific object store for meteorology (FDB2) will be further developed
to make best use of the offered storage services. The unique feature of FDB lies in its use
of scientific semantic indexing, which abstracts the complexities of IO hardware technology,
enabling application developers to manage data storage and access solely through scientific
metadata. The primary objective is to support meteorological use-cases, such as the Climate
and Weather Forecast application in WP3, to utilise the NVMe storage available on datanodes.

In order to achieve this, a ‘remote’ FDB will be installed directly on the datanodes. This will provide
direct access to NVMe resources and function as a data storage server. Parallel applications
executing on compute nodes will be able to read input and send output directly to this server,
facilitating high-throughput, low-latency data storage.

Upgrades to the FDB will be implemented to enable seamless access to multiple storage tiers
simultaneously, so that this FDB is able to tranparently route IO requests to, or move objects
between, NVMe and the parallel file system.

Additionally, it is feasible to develop an object storage backend layer that will facilitate the storage
of FDB objects in the KV stores from FORTH (see section 5.2.1). This possibility will be explored
further.

Progress made in the IO-SEA project to develop a domain-agnostic scientific object store, known
as DASI, will directly benefit from these advancements.3 DASI, a metadata-driven data store
inspired by and built on top of the FDB, can be used for non-meteorological applications as
well.

Timeline

M36 FDB installed on datanodes with NVMe access set up for meteorological use-cases.

M48 Seamless, transparent data access to both NVMe and parallel file system via the FDB.

5.4 Tools and Acceleration Libraries

5.4.1 IO Instrumentation and the IO-SEA Recommendation System

IO-Instrumentation

The IO-SEA stack includes 2 user targeted tools to help them understanding the I/O aspects
of their workflows and properly size their ephemeral I/O services: IO-Instrumentation and the
IO-SEA Recommendation System. IO-Instrumentation is designed to collect the I/O activity of
workflow steps and their usage of Ephemeral Services. It gather many statistics such as the I/O
volumes, the time taken by each I/O operation as seen by the steps,... and create records for each
5 second timeslices of the run time in a condensed format. Metrics are gathered form compute

2https://github.com/ecmwf/fdb
3https://github.com/ecmwf-projects/dasi
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nodes and stored in a central Mongo DB database. A graphical user interface is available to
display those metrics on a per-job and per-workflow basis.

Applications are instrumented through an interception mechanism at the GLIBC level (LD_PRE-
LOAD), so neither modifications nor recompilations of applications are necessary. However, it
is possible to have conflicts with other middlewares that rely on the same interception mecha-
nism.

Instrumentation is automatically enabled by the IO-SEA Workflow Manager when used. It is also
possible to set it up defining a few environment variables. The IO-Instrumentation product is
deployed on compute nodes for collecting metrics, and on one or more service nodes for the
database and the Graphical User Interface.

IOSEA Recommendation System

The IO-SEA Recommendation System is a tool that analyses IO-Instrumentation records of a
workflow and provides recommendation in term of data placement and configuration of the
Ephemeral Services in order to optimise either in terms of performance or energy consumption.
The recommendation are done through settings adjustments in the Workflow Description File.
The systemutilises a black box optimisation engine, amathematicalmodel of the application’s I/O
behaviour, a machine learning-based performance model, and a simulation engine to efficiently
explore the parameter space and simulate application execution in a virtual HPC environment.
Our approach selects themost suitable storage tier for each I/O phase, minimising the workflow’s
total duration and Burst Buffer usage.

FIGURE 16: THE GENERAL ARCHITECTURE OF THE RECOMMENDATION SYSTEM.

In EUPEX, the recommendation system will be deployed and a performance model of the test
infrastructure will be created. Then, it will be used with use cases to optimise their usage of the
ephemeral services.
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Timeline

M30 Compilation and tests on ARM A64FX

Port IO-Instrumentation and the Recommendation System on Rhea

Work with WP3 use cases to create their workflow description files.

M36 Running on Rhea nodes

Experiment with use cases the usage of Ephemeral Services

5.4.2 ParaStation HealthChecker

The ParaStation HealthChecker will be used to ensure that at the start time of each new job the
IO-SEA data nodes to be used by the job are in a defined health state and all services, system
services as well as ephemeral services, are up and running as expected. The HealthChecker will
be triggered by the ephemeral I/O services startup mechanism. Health checking tests suitable
for the special environment on the IO-SEA data nodes will be installed and configured.

In EUPEX this setup and configuration will be deployed and further adjustments of the tests are
made to the hardware of the prototype.

5.4.3 MAWA-HPC: Modular and Automated Workload Analysis for HPC Systems

Given the complexity of modern HPC systems, achieving theoretical peak performance depends
on a myriad of parameters and system configurations. In order to optimise the system perfor-
mance and efficiently use the underlying resources, various methods can be applied, including
simulation, benchmarking, and monitoring. However, these methods and the tools are not com-
patible with each other and only consider a selection of performance factors such network,
Input /Output (I/O), resource allocation, or parallel execution. Yet, each of these approaches
generate knowledge that can be applied to similar problems or system configurations. To avoid
that such knowledge is collected only for one-time purposes, and to also support other users,
this knowledge must be easily accessible and available to the community.

The MAWA-HPC (Modular and Automated Workload Analysis for HPC Systems) [45] infrastruc-
ture aims to provide a generic workflow and tooling suite that can be applied to different use
cases and workloads from different science domains. By integrating JUelich Benchmarking
Environment (JUBE) for automation, established monitoring and profiling tools, node-level per-
formance engineering tools, network benchmarks, and microbenchmarks for various parallel
programming models (e. g., MPI and PGAS), MAWA-HPC enables multidimensional performance
modelling. This makes established community tools available in a user-friendly manner and
facilitates the identification and understanding of system and application level performance
anomalies through the development of intuitive dashboards and hints. Through its modular
design, the workflow is able to support various community profiling andmonitoring tools, increas-
ing the compatibility of each tool and covering new use cases. Figure 17 shows the high-level
system design of MAWA-HPC and its current prototype implementation.
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FIGURE 17: HIGH-LEVEL ARCHITECTURE OF THE MODULAR AND AUTOMATED WORKLOAD ANALYSIS FOR
HPC SYSTEMS (MAWA-HPC) ANALYSIS CYCLE.

Developments/Extensions planned within EUPEX

MAWA-HPC will be adapted to the special characteristics of the EUPEX platform. In the first
step, Goethe University Frankfurt plans to integrate the support of the community tools Score-P
and Scalasca, which are ported and adapted to EUPEX by Forschungszentrum Jülich in Task 5.3.
By extending MAWA-HPC with the support for additional monitoring and profiling tools, Goethe
University intends to introduce a multi-dimensional Roofline model for performance characteri-
sation [46, 47]. Including time as a third dimension, the Roofline model can provide insight into
an application’s performance over time, enabling the identification and understanding of I/O
performance anomalies.

Subsequently, support for I/O load balancing (for both application data and metadata) based on
the analysis of the I/O behaviour of workflows to distribute the workload evenly over all available
storage targets will be integrated, especially for burst I/O where the shared nature of parallel file
and storage systems causes load imbalance and resource contention over the end-to-end I/O
paths resulting in severe performance degradation. To achieve this, Goethe University plans to
integrate the end-to-end I/O load balancing framework Tarazu with MAWA-HPC.

Timeline

M30 Score-P and Scalasca integrated into the MAWA-HPC tooling infrastructure.

M36 Prototype integration of Tarazu with MAWA-HPC.
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M48 MAWA-HPC ported and adapted to EUPEX pilot platform.

5.5 Hardware Dependencies on the Prototype

Discussions have been conducted with Work Package 4 to define the requirements of the EUPEX
I/O stack. These discussions led to 2 specific requests:

Local disks on Compute nodes, in order to run the tools of the in-memory tier

Data Nodes equipped with NVMe storage and fast connections to the different compute
modules, in order to run the Ephemeral I/O Services
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6 Summary

This deliverable presents the software ecosystem of the EUPEX platform. This ecosystem covers
all the technical areas critical to the operation and maintenance of an MSA system. These range
from system management components forming the control plane, via the execution environment
providing applications with a unified view on the available resources; through to tools for tracing,
monitoring, and optimisation to ensure the efficient execution of applications and workflows on
the Pilot system. In addition, the EUPEX software suite includes an I/O stack enabling the efficient
access to hierarchical, multi-tier I/O subsystems. While presenting the individual components and
how they fit into the software ecosystem, this deliverable also provides details on the timelines
with respect to further developments and integration within EUPEX.

The EUPEX software ecosystem will be the result of integrating various components from
different projects, companies, and research institutions across Europe to form a single, coherent,
and mature software stack to operate Exascale-class MSA systems. Although the software
stack will be designed with the EUPEX Pilot system in mind, it is not bound to the characteristics
of this particular platform but will support MSA-based supercomputers in general.
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