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Executive Summary

This document reports activities accomplished in WP3 during the second year of the project. The
work done in this document has been carried out over the period from M12 to M24, and it is focused
on the optimisation of the applications that constitute the EUPEX benchmark suite.

In particular, the work has tailored applications to make good use of the two main hardware specifici-
ties which the EUPEX pilot platform should expose to end developers: the Scalable Vector Extension
(SVE) instruction set, and High Bandwidth Memory (HBM). Both of these hardware features are still
unusual for CPUs, and the Fujitsu A64FX platform is to date the only platform to combine both of
these characteristics. Accordingly, the A64FX partition of the Irène supercomputer hosted by the
CEA in France has been used for a large fraction of this optimisation work.

As described in the DoA part B, the objectives of this deliverable are the optimisation of EUPEX
use cases for SVE and HBM, with a particular focus on portability, scalability, and accuracy. Porting
strategies for targeting the novel hardware features are described for each application use case.
Benchmark results highlighting the effect of SVE and HBM usage are also presented and discussed.

Lessons learned from this exercise by each partner have been distilled in the conclusions, and
will provide useful insights for the community of applications that will be hoping to target the future
JUPITER Exascale-class European supercomputer, which will feature EPI hardware.
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1 Introduction

The EUPEX project is breaking ground in demonstrating a number of new technologies deployed
together in an HPC environment. It is therefore important that project applications demonstrate
these technologies to be usable by, and useful to, a range of scientific applications representative of
workloads that might be encountered in future European HPC centres.

1.1 Irene - Fujitsu A64FX

Based on Fujitsu PRIMEHPC FX700 technology, the A64FX partition of the Irene system, hosted
by TGCC-CEA, is used as a proxy system in the EUPEX project. It is made up of 10 chassis, each
hosting 8 air-cooled computational nodes for a total of 80 nodes. These are integrated into GENCI’s
Joliot-Curie supercomputer, which is a machine dedicated to European academic and industrial open
research.

The A64FX partition gives scientists the opportunity to port their applications, and prepare for the
future European processor by leveraging the unique, HPC focused features of the A64FX processor.
These features include the SVE vector instruction set and the use of HBM2 fast access memory.
Each node contains [1][2]:

• 1x 48-core Fujitsu A64FX ARM processor clocked at 1.8 GHz

• 2.7648 DP TFlops / 5.5296 SP TFlops @ 1.8 GHz

• 32 GB HBM2 memory (1024 GB/s) out of which 24 GB is dedicated to the user

• 1x 512GB NVMe disk

• NVIDIA HDR100 Infiniband (12 GB/s)

The Irene system provides a large variety of compiler stacks exposed via the module system such as
Fujitsu, ARM, GNU, and NVIDIA as well as OpenMPI with UCX for MPI. Some examples of complete
toolchains that are available on Irene are:

• fujitsu/1.2.0 + openmpi/4.0.5 + SSL

• arm-compiler/21.0.0 + openmpi/4.0.5 + armpl (ARM performance libraries)

• gcc/11.1.0 + openmpi/4.0.5

For application profiling, a number of tools are made available such as:

• Fujitsu FIPP/FAPP [3]

• ARM Forge MAP (now called Linaro MAP) [4]

• Linux perf with ability to set paranoid levels to capture CPU events

• In the context of the EUPEX project, ScoreP has been ported to the platform [5]

EUPEX - 101033975 7 31.12.2023
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1.2 SVE

SVE, or Scalable Vector Extension[6], is a SIMD ISA developed by Arm, in part, to allow for vector
code to scale with increasing hardware capabilities. This is done by making SIMD instructions vector
length agnostic, and instead determining this at runtime. The hardware vector length can vary from
128 bits up to 2048 bits, in 128-bit increments. This allows developers to write code specialised for
SVE while being assured that the same code will run on future machines - allowing for more time to
be invested into optimising future proofed code.

This idea is a first in terms of SIMD ISAs, where, for example, code optimised and compiled for the
Intel AVX2 instruction set would need to be re-optimized and recompiled in order to make use of the
AVX512 instruction set available on more recent platforms.

To date, this technology has been adopted by Fujitsu’s A64FX, AWS’ Graviton3 processors, and most
recently, the NVIDIA Grace processor. Interestingly, the A64FX processor has a single 512 bit vector
length, Graviton3 has 2x256bit vectors, and Grace has 4x128bit vectors.

The three most straightforward ways for software to target SVE are as follows :

• Use an SVE-enabled library provided by the ARM compiler environment or by the CPU designer

• Make use of auto-vectorization capabilities of a compiler, be it via compiler-specific flags and
directives, or OpenMP SIMD directives

• Employ SVE intrinsics or assembler instructions to mandate explicit SVE usage

In applications that make use of algorithmic elements present in mathematical libraries, making use
of SVE-enabled libraries is the first thing to be done. Examples of elements that can be found in such
libraries include FFTs, dense and sparse linear algebra operations, sorting operations, and many
more. This might be as easy as targeting the right optimised library at build time, for software already
relying on a mathematical library to provide algorithmic building blocks, or modifying the code to rely
on a library call instead of a bespoke in-code implementation of the algorithmic element. In codes
where such building blocks make up a significant fraction of execution time, a large performance uplift
can be achieved.

The second approach leverages the compiler to do the heavy lifting of targeting the SVE instruction
set. All major compilers support some form of auto-vectorisation, in which loop constructs applying
identical instructions to multiple addresses are replaced by a single vector instruction. Simple
loops free of predicates and data dependencies are easily vectorised by compilers. However, more
complex loops might require some code reorganisation and/or annotation with compiler directives
to achieve vectorisation. The use of compiler-based automatic vectorisation is critical in achieving
good performance in code that does not have algorithmic hotspots that can be handled by library
calls and must be handled on an individual basis. Areas of code that do not vectorise well can often
be reorganised or annotated with compiler directives, in order to improve auto-vectorisation by giving
the compiler information that can only be guaranteed by the programmer. Compiler directives related
to vectorisation can be split into vendor-specific directives (see the Fujitsu compiler guides [7][8] for
Fujitsu compiler examples) and more general directives such as the OpenMP SIMD directives, which
are more portable.

EUPEX - 101033975 8 31.12.2023
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Finally, SVE intrinsic functions may be inserted directly into code. For non-library-acceleratable
code, this approach offers maximum performance potential, but is also the most invasive and time
consuming to implement. Platform intrinsics such as SVE are C-style functions, and cannot be used
as is without a custom interface from Fortran code. Intrinsics-based code tends also to be more
time-consuming to read, due to its assembly like appearance, and is less platform-portable, since
vector intrinsics are platform-specific.

It is also possible to resort to SVE assembly, but this is not typically an approach end-user developers
might wish to follow.

1.3 HBM

In the world of HPC, HBM, or High-Bandwidth Memory, is an interface for SDRAM that saw a first
hardware implementation in 2013 (HBM1 [9]). It was competing at the time with an alternative interface
named HMC (Hybrid Memory Cube), but has since then entirely supplanted it for high-bandwidth
applications.

The HBM interface aims to allow higher bandwidth than (G)DDR of the same generation, while
reducing power consumption. These advantages do come with a strong downside, since HBM
memory is phsically attached to the device at manufacturing time, meaning memory size is not a
configuration option but rather a chip skew. This last point is an issue for CPUs more than for GPUs,
since GDDR memory used on GPUs is also soldered in place at assembly time. HBM memory is
also more expensive per byte than DDR memory. The interface has gone through 3 major revisions,
with bandwidth more than doubling at each revision, and maximum capacity also increasing thanks to
an increase in the number of stacked layers.

Thanks to its industry-leading bandwidth, HBM has been used on top-of-the-range GPUs for most of
the last decade. Despite its bandwidth advantage, HBM’s use for CPUs has not been widespread, to
date. Notable exceptions are the the NEC Aurora vector CPU family, and the Fujitsu A64FX. Most
recently Intel has released the Xeon MAX versions of the "Sapphire Rapids" CPU generation featuring
a combination of HBM and DDR memory.

From an application’s standpoint, the main aspect to consider is the limited size of HBM. Here a
critical difference appears between the EUPEX software development platform, the A64FX-based
Irene machine hosted at the CEA, and the future EUPEX prototype machine. The A64FX-based
system has a limited amount of HBM2 memory per node – 32 GB, of which 24GB is usable by an
application – and no node-level DDR-based memory. The EUPEX prototype, on the other hand,
will have a much larger amount of HBM3 memory per socket, and will also have DDR memory on
the motherboard. On Irene, the total application resident memory must fit into the HBM. This is
restrictive on application design and problem size. With the presence of DDR-based memory on
the EUPEX prototype, the role of the HBM can be different (e.g., a very large user-managed cache),
as it is not required that the entire application resident memory reside in HBM. The absence of
a system-managed cache mode for HBM handling on the Rhea-based EUPEX prototype make it
different from the only other CPU platform which offers a combination of HBM- and DDR- based
memory. The practical implications of this difference will only become fully clear once application
work on the Rhea-based EUPEX platform hardware commences.

EUPEX - 101033975 9 31.12.2023
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2 Tailoring EUPEX Benchmark Applications to
SVE and HBM

In this section, we detail the work done on the application workflows constituting the EUPEX bench-
mark suite in order to make use of the Scalable Vector Extension (SVE) instruction set and the High
Bandwidth Memory (HBM) features that will be present on the EUPEX prototype.

2.1 IFS Weather Forecasting Suite

The Integrated Forecasting System (IFS) is ECMWF’s flagship weather prediction software suite. It is
a Numerical Weather Prediction (NWP) program that is used to create a variety of forecast products
for Member and Co-operating States. A detailed description of the IFS can be found in EUPEX
deliverable D3.1[10].

The IFS is an extremely varied codebase due to the truly global scale of the problem space. In light
of this we have chosen a suitable subprogram, internally called a dwarf, named CloudSC to evaluate
SVE and HBM. CloudSC is a cloud microphysics parameterisation scheme, which can be easily
scaled to stress even the most advanced technologies.

2.1.1 CloudSC Dwarf Results

Using C SVE intrinsics in Fortran

SVE intrinsics allow for explicit and hand optimised vectorisation. This allows for potentially higher
performance than what the compiler would be capable of, if extra knowledge about the code is
necessary for vectorisation. It also ensures vectorisation is used - even if the compiler can’t auto-
vectorise code.

The IFS, and by extension CloudSC, is written almost entirely in Fortran, and it is not feasible to
translate the whole codebase due to its size and complexity. Unfortunately SVE intrinsics are only
available in C, and this is not something that can be easily changed.

The solution is to identify hot sections of the codebase and hand write SVE kernels for these in C.
These kernels can then be called from Fortran, as it supports the C ABI.

EUPEX - 101033975 10 31.12.2023
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Figure 1: Performance of various kernels against an auto-vectorised Fortran kernel baseline

Figure 1 shows the results of an experiment designed to measure any impacts of cross language
compilation. This experiment used three kernels, all identical in function, one written in Fortran, one
in C, and another in SVE intrinsics. These kernels were then called from either a Fortran or C driver,
which contained the loop headers - much like what would be implemented in CloudSC.

In these simple examples, it was possible to beat the auto-vectorised code. This can be seen with
the two intrinsics kernels beating the Fortran baseline by 135% and 134% for Fortran and aligned
C drivers respectively. However, initial result for the C kernel showed a significant 67.1% slowdown
compared to the Fortran baseline. Further analysis revealed that this was due to memory alignment
issues. The Fujitsu Fortran compiler automatically aligns to 64 byte boundaries by default, but the
Fujitsu C compiler instead chooses 16 byte boundaries. This was identified by Fujitsu’s FAPP tool [3]
showing a higher "stream mode prefetch rate" for the Fortran handler configuration. This was easily
fixed using aligned_alloc.

Experiments were also done comparing inlined and non-inlined code, to asses the impact of function
calls between driver and kernel, but are not represented in Figure 1 as the difference was negligible.

In conclusion, not only is it possible for SVE intrinsics to be used in Fortran via C, but it can also
out-perform the compiler - although care must be taken to accomodate subtle compiler differences.
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Figure 2: Performance of CloudSC without vectorisation, with auto-vectorisation, a handwritten SVE
kernel, & auto-vectorised refactored kernel

Effects of Vectorisation on Performance

By just using the compiler with sensible flags, e.g. -KA64FX, -KSVE, -KARMV8_3_A, -Ksimd=2,
etc., auto-vectorisation is able to increase performance by 87.6% from 45.7 GFLOPS to 85.8 GFLOPS
- an expected and easy result. However, the A64FX processor is capable of much higher performance,
which cannot be reached through compiler flags alone.

As can be seen in Figure 2, refactoring the hottest loop within CloudSC yields an increase in
throughput of 57.9% over base performance. The change was minimal, less than 10 lines, and
involved changing a gather/scatter operation to contiguous load/store accesses. Gather/scatters are
particularly expensive on the A64FX due to both its pipeline design and the high latency of HBM.

95.6% of this performance of the auto-vectorised code can be achieved by a hand written SVE
intrinsics kernel, which can be seen in Appendix 5.1.1. Unlike the auto-vectorisation done by the
compiler, the SVE intrinsics are completely portable across SVE-enabled platforms and do not rely
on the compiler’s ability to perform optimisations. This allows us to immediately achieve what we
know is good performance, on unknown SVE-enabled platforms, which might have compilers lacking
maturity.

This approach also allows us to incrementally vectorise our application, starting with the hottest loops
for maximum impact.
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Figure 3: Cycle accounting by cores in CMG 0 from FAPP, for handwritten SVE intrinsics
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Figure 4: Cycle accounting by cores in CMG 0 from FAPP, for compiler vectorised code
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As seen in Figure 2, a hand written SVE intrinsics kernel written in C and called from Fortran, achieves
95.6% of performance of an auto-vectorised loop in CloudSC. This kernel also does not use any
memory prefetching optimisations, which could easily account for this missing 5% of performance.
This is reinforced by Figures 3 and 4, as Figure 3 (handwritten SVE intrinsics kernel) has more
cycles spent on FP L1D cache waits and FP memory access waits, than Figure 4 representing
auto-vectorised code.

There are, however, some drawbacks to hand-written SVE code. The first is that by starting with
the hottest loop and working to the coldest, returns will be diminishing. Although, this does allow
developers to decide when to stop manually vectorising the code, as it is obvious when subsequent
vectorisation efforts will not provide a worthwhile performance increase.

Another drawback is that the code is, by design, vectorised in a piecemeal manner. This means
that the code isn’t optimised across loops, which could result in unrealised potential performance.
A solution to this could be to perform these inter-loop optimisations once a satisfactory amount of
vectorisation has been achieved, and therefore when it is unlikely for the vectorised code to change
much.

It’s also worth noting that when explicit intrinsics have been used, the compiler is constrained in the
optimisations it can apply to the intrinsics. While it is still allowed to interpret the intrinsics as it sees
best, by being more explicit, we have deprived the compiler of its own interpretation of the original
code. This has the drawback of preventing future, possibly superior, compilers from optimising the
original code. However, this is easily mitigated by benchmarking new compiler versions with and
without the explicit intrinsics enabled, which we recommend should be contained within an #ifdef
statement.

Impact of Memory Bandwidth on CloudSC

CloudSC is known to be compute intensive and often not bound by memory bandwidth, as shown in
Figure 6. However, a more empirical metric of this would be desirable.

The following procedure provides this. Performance is modelled with a naïve equation, which ignores
I/O and communication performance:

𝑇1 = 𝑇0𝛼

(︂
𝑓0
𝑓1

)︂
+ 𝑇0𝛽

(︂
𝐵𝑊0

𝐵𝑊1

)︂
Where:

• 𝑇0 & 𝑇1: Are some performance metric from two separate runs

• 𝛼: Compute dependency (𝛼 = 1, purely compute bound)

• 𝑓0 & 𝑓1: The CPU frequencies used on the two runs

• 𝛽: Memory bandwidth dependency (𝛽 = 1, purely memory bound)

• 𝐵𝑊0 & 𝐵𝑊1: The memory bandwidths used on the two runs
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This equation is similar to Amdahl’s law, but instead of splitting the application into sequential and
parallel sections, it splits it into compute bound and memory bound. As we cannot change the
memory bandwidth, we assume the ratio between runs to be 1. However, we can change the CPU
frequency, and so runs are taken at various frequencies. We then plot the following rearranged
equation:

𝑇1
𝑇0

= 𝛼

(︂
𝑓0
𝑓1

)︂
+ 𝛽

𝛼 and 𝛽 can then be easily calculated with a linear regression. These were 𝛼 = 0.651 & 𝛽 = 0.343 for
CloudSC, indicating that it is heavily compute bound.

However, a portion of CloudSC is still memory bound, so while its performance increases might be
less significant than those from SVE, HBM does provide some benefit. Unfortunately we cannot
quantify this on Irene as there is no way to toggle the HBM on and off.

However, using an Intel Sapphire Rapids Max based machine, Figure 5 could be obtained. While
there certainly are architectural differences to ARM based systems, it illustrates well that CloudSC
can see some benefits from HBM - even if it’s mostly compute bound.
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Figure 5: Performance of CloudSC with increasing nproma size (analogous to blocking size for the
compute loop), HBM only vs DRAM only. The text is percentage performance gained with
HBM

Effects of HBM Memory on Full IFS

As described previously, the CloudSC mini-app is heavily CPU-frequency bound, and as a con-
sequence benefits comparatively little from the very large memory bandwidth that HBM provides.
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However, the IFS contains many components that have very different computational patterns and
memory traffic from the CloudSC code. The effect of HBM on IFS performance has therefore been
analysed. In order to be able to do a fair comparison against a baseline in which memory type is the
only difference, a platform exposing both HBM and DDR must be used. To this end, a dual-socket
Intel Xeon Max (Sapphire Rapids) node was used for this work. The CPU was a Xeon Max 9580,
with 56 cores clocked at a base frequency of 1.9 GHz with a maximum turbo frequency of 3.5 GHz,
and 64GB of HBM. On top of the HBM, each socket had 256GB of DDR5 RAM with 4400 MT/s.

The IFS was run across both CPU sockets, on a TcO79 137-level grid, in a configuration of 16 (MPI)
tasks x 7 (OpenMP) threads. It was run first in DDR-only mode, with HBM disabled, and then with
HBM being used preferentially, via the use of the numactl utility, i.e.
mpirun <any additional flags> numactl --preferred-many=8-15 ./a.out
The --preferred-many=8-15 here requests that NUMA regions 8-15 of the platform, namely the
HBM regions of the NUMA platform, be used preferentially.

Figure 7 shows the difference in performance between the reference run using RAM, and the HBM-
enabled run. Performance is measured in Forecast Days Per Day (FDPD), and plotted as a function
of NPROMA, the cache-blocking innermost dimension of data structures in the IFS. HBM is seen to
have a large beneficial effect on IFS performance, with more than 25% improvement to performance.
Optimal cache-blocking length is also substantially higher, due to the very high bus width (1024b). To
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put the FDPD numbers shown in Figure 7 into perspective, ECMWF’s operational TcO1279 15 day
forecasts must complete in under one hour, corresponding to a minimal operational requirement of
360 FDPD.

Figure 7: Forecast days per day of execution, with and without HBM. Higher is better. Grid resolution
Tco79

The IFS is a large codebase, consisting of a number of algorithmic components that exhibit different
coding styles and different computational patterns. It is therefore interesting to to look at the effect
of HBM memory in more detail, at a finer level of granularity. Figure 8 illustrates the differences in
effect of HBM on different components in an IFS timestep. It plots the time spent in 4 components
(physical parameterisations, grid-point dynamics, radiation, direct Fourier transform), as a function of
the NPROMA innermost cache-blocking array dimension, normalised for each component by the time
spent with an NPROMA value of eight. Dashed lines correspond to the reference runs without HBM,
while solid lines are obtained from runs using HBM. Different components are observed to benefit
from HBM to very different degrees. One extreme is the direct Fourier transform which sees almost
no improvement in wall-time from HBM, while the opposite extreme is the grid-point dynamics, which
sees a 45% speed-up vs baseline for an NPROMA value of 128. This HBM-related performance
benefit in the grid-point dynamics increases strongly with the NPROMA value, unlike the performance
of the same component without HBM, which is seen to degrade significantly with increasing NPROMA
value. Indeed for an NPROMA of 128, grid-point dynamics in the HBM run takes less than half the
time taken in the run without HBM. This can be contrasted with the radiation, where performance with
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HBM is about 25% better than the baseline, but independent of NPROMA, while performance without
HBM degrades slightly with increasing NPROMA.

Figure 8: Effect of HBM on cost of different atmospheric components. Lower is better. Grid resolution
Tco79

2.1.2 Conclusion

From the previously described work, we have learnt the following about both HBM and SVE:

• The CloudSC mini-app is largely unaffected by High Bandwidth Memory as it is heavily compute
bound

– This can be determined with a very simple test performed on any platform

– Effort should be put into optimising with vectorisation

• The IFS as a whole does benefit substantially from High Bandwidth Memory

– This is due to it being made from many different components

• There are a lot of gains to be made with vectorisation

– Even with only a few lines changed

• Compiler auto-vectorisation can only vectorise what it’s given – not refactor entire algorithms
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• Code bases written in “legacy languages” can still leverage cutting-edge language-specific
features without performance penalty

– Care must be taken to accomodate hidden differences between language specifications

• Source to source translation could be an ideal way to quickly increase performance while
compilers achieve maturity
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2.2 Cybeletech - Agriculture

2.2.1 Workflow Description

The CySim software suite is a closed-source library enabling simulation of plant growth on a wide
range of species and agricultural contexts (open field vs greenhouse, annual vs perennial crop,
cereals vs oleaginous vs vegetables, etc.).

The CySim core library is built in C/C++ and simulates the growth of plants. The mathematical
formalization, relying on state-space dynamical systems theory, describes the cropping system as:{︃

𝑋(𝑡+ 1) = 𝐹 (𝑋(𝑡), 𝑈(𝑡), 𝜃)

𝑋(0) = 𝑋0

(2.1)

The three inputs requested are: the environment 𝑈(𝑡) is expressed in temporal series of climate data
at an hourly or daily timestep, 𝜃 are the system parameters which characterize a genotype, 𝑋0 is
the initial state (grain biomass, sowing density, etc.). The state function 𝐹 describing the biophysical
processes is controlled by external variables 𝑈(𝑡) at time 𝑡, which include the climate condition and
cultural practices. The output consists of the timeseries of state variables 𝑋(1 : 𝑡), e.g. organs
biomass, yield, stresses, etc.

The EUPEX workflow focuses on parametric estimation, i.e. estimating relevant 𝜃 parameters for a
species, based on observations of plant growth (𝑋 partially observed in known 𝑈 timeseries). The
workflow is depicted in Figure 9.

Figure 9: Parametric estimation workflow using the kfold algorithm
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The data from the Cybeletech database on crop species properties is used to define the range of
acceptable values for each parameter of 𝜃. An experimental design is built based on these extrema
and user specifications such as the target number of simulations and the sampling method. The
simulation results are gathered and accuracy metrics, such as Root Mean Square Error or Dynamic
Time Warping, are computed to evaluate each set of parameters across the different environmental
conditions. These results are analysed to identify the parameters set or group of parameters sets
describing most accurately the plant response to its environment. If there are enough individuals,
they can be separated into subgroups, and calibrations will be performed separately on each of them.
The best models of each group will then be tested on other groups in order to identify the statistically
most valid among them. If there are not enough individuals, then a single calibration is performed,
and the best models are selected.

This therefore needs large simulations, and is a relevant training for the next use case: yield prediction
from several climate time series from IFS/ECMWF.

Accuracy estimation and model selection is implemented in Python and has standard package
dependencies. The experimental design generation workflow is implemented in Python using SciPY.
The experimental design is split according to the number of CPUs available and the simulation is then
distributed using MPI. The split and parallelisation are implemented in Python using the library mpi4py
[11] while the plant growth model is implemented in C++. The runs of the models are triggered by the
Python script using the precompiled .exe file. The C++ library for plant growth simulation relies on
standard C++ libraries.

The workflow is usually deployed and run using a Docker image, which contains the precompiled C++
libraries and executable files for plant growth simulation, and Python scripts of the workflow.

When packaged into a container, an application can run inside an isolated environment, embedding
its own dependencies into the container. The container can then be run on almost any computing
infrastructure. By abstracting the software infrastructure, the container allows us to make the
application truly portable and easily deploy on an on-premises server, a virtual machine in the
cloud, or even a developer’s laptop. It eases guaranteeing reproducibility and compatibility between
various application maturity stages: research, development, test, and production. For those reasons,
containerization has become a requirement for a lot of companies to deliver software development
and is the base of most Cloud services platforms. We believe empowerment by containerization
(e.g. abstraction of complex C/C++ or Fortran dependencies) is very relevant for the adoption of new
computational resources and supercomputers by scientific software engineers and scientists, as it
has been for acceptance of Cloud solutions. For example, containerisation allows us to bring our
own release versions to a machine with the guarantee of exact behavior compared to the developer
laptop: it allows the control of not just the dependencies, but also the environment, directly managed
by the user, with autonomy from machine administration services.

2.2.2 Optimisations and Results

Deployment of Containerized Code

A Docker image for ARM has been built on Cybeletech servers thanks to Docker CLI plugin
docker buildx. The image is then exported to the Irene cluster to run the evaluation. The data
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needed on crop species properties are usually accessed over the internet into postgresql databases.
As the Irene cluster does not allow connections with external servers, the data needed on crop
species properties are extracted from our databases into json and csv files and copied to the cluster.
Therefore, the I/O of the data cannot be evaluated here.

Runs of the workflow have been performed and monitored on Irene. Two container methods have
been investigated: Apptainer and Irene Pcocc-rs.

Apptainer [12] is an open source project created to run complex applications on HPC clusters in a
simple, portable, and reproducible way. First developed at Lawrence Berkeley National Laboratory, it
quickly became popular at other HPC sites, academic sites, and beyond. It uses Singularity Image
Format (SIF) images. Apptainer needs to be installed by the user on Irene, since it is not pre-installed
by administrators. The launch is then made through a Slurm submission script:

#!/bin/bash
#MSUB -r box_128_32r # Request name
#MSUB -n 2 # Total number of tasks to use
#MSUB -c 2
#MSUB -T 86400 # Elapsed time limit in seconds
#MSUB -o output_%I # Standard output. %I is the job id
#MSUB -e error_%I # Error output. %I is the job id
#MSUB -q a64fx # Choosing nodes
#MSUB -A epxt310

./apptainer/bin/apptainer shell --compat -B calibrationV3:/calibration
--fakeroot ~/cysim_20221201_arm.sif
cd /calibration/
export USER=cybele && export HOME=/home/cybele/
source .env
mpirun --allow-run-as-root -n 2 python3 kfold_calibration.py 2

Irene provides a tool for container launch, pcocc [2], allowing to deploy both virtual machines (VMs)
and containers on compute resources. Container images can be launched interactively on the login
node or within Slurm jobs. As per the TGCC manual [2], clusters of containers are instantiated on the
fly with a single command, which allocates the necessary resources to host the virtual machines,
including private Ethernet and/or InfiniBand networks, and starts VMs with ephemeral disks created
from the common image. High performance networks and GPUs can be used from within the virtual
machines. However, pcocc was implemented for x86 architectures only. A new tool, pcocc-rs, has
been released in beta at the beginning of 2023 to enable ARM access to containers and VMs.

The launch in Slurm is made through a batch script:

#!/bin/bash
#MSUB -r box_128_32r # Request name
#MSUB -n 2 # Total number of tasks to use
#MSUB -c 2
#MSUB -T 86400 # Elapsed time limit in seconds
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#MSUB -o output_%I # Standard output. %I is the job id
#MSUB -e error_%I # Error output. %I is the job id
#MSUB -q a64fx # Choosing nodes
#MSUB -A epxt310

pcocc-rs run cysim_20221201_from_irene155
--mount src=~/calibrationV3/,dst=/calibration
-- bash -c "cd /calibration/ && export USER=cybele && export HOME=/home/cybele/
&& source .env && mpirun --oversubscribe -n 2 python3 kfold_calibration.py 2"

Runs of the workflow have been performed and monitored on Irene using apptainer in early 2023.
We then made the final runs on pcocc-rs when it was released. The results presented are generated
using pcocc-rs, but results were identical to those obtained from the primary runs on Apptainer in
terms of resource use and computational time.

Memory

Low memory usage is a key on Irene due to the limited High Bandwidth Memory. Instead of keeping
all state variables stored in memory, a paradigm has been added to the CySim framework, to reduce
"Observables". I.e. the state variables that will be kept in memory on each passed 𝑋(𝑛) timestep
during the simulation. This way we are more independent from simulation timeline and in our case,
RAM usage is reduced by 2/3 [13] for a timeline of 200 days.

For a batch of simulations, the RAM usage has been optimized to remain as stable as possible while
the number of simulations increases: as explained in the workflow description, most ressources used
for a simulation are destroyed at the end of it, only some data is kept in memory in the python script:
a partial extract of the state variables and the accuracy metrics. That data is then written to a file to
be accessed in the metrics analysis phase.

The RAM usage is monitored by the tracemalloc python library to generate statistics on allocated
memory blocks per line. We focus on block allocation during the entire workflow. Given that the
launch of a batch of simulations is nearly state-less, the mean RAM usage per node is very stable
around 1700MB, independently of the number of simulations, as seen in Figure 10. The RAM usage
on x86 architectures Intel® Core™ i7-9850H CPU 2.59 GHz and AMD EPYC 7000 series (AMD
EPYC 7571) 2.5 GHz where computed for 100 to 1000 simulations and 4 to 10 nodes. As presented
in Figure 11, the RAM usage is slighly superior for ARM than x86, variation between the x86 and
ARM infrastructure is < 1% for equivalent number of simulations and nodes.

Computational Time

CPU consumption is tracked through the CProfile python library. CProfile provides determinis-
tic profiling of python instructions, enabling tracking of each instruction’s contribution to the total
runtime.

Relative contribution of workflow main steps to computing time are shown in Figures 12, 13, 14.
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Figure 10: RAM mean usage for the entire work-
flow on ARM.

Figure 11: RAM mean usage for the entire work-
flow on x86 Intel i7-9850H.

Figure 12: Relative runtime contribution of main workflow functions on 4 nodes.

Figure 13: Relative runtime contribution of main workflow functions on 10 nodes.

The construction of the model inputs and experimental design generation are straightforward and do
not require high computational power or consume a lot of memory. More over, it is independent of the
number of simulations, it does not appear on the Figures 12 to 14 as its contribution is too small to be
visualized properly.
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Figure 14: Relative runtime contribution of main workflow functions on 24 nodes.

generate_outputs concatenates output creation in the first part (run_calibration) and the second
part (kfold_analysis). The kfold_analysis computing time is independent of the number of
simulations, as expected, therefore its relative contribution decreases strongly with the number
of calibration simulations. Simulations for the calibration phase (run_calibration) is the step of
the workflow having the highest computational demand and runtime: it surpass 60% of the total
runtime at only 200 simulations (see figures 12, 13) and its contribution keeps increasing with a
logarithmic shape while simulations number increases. The output generation of the calibration phase
is the second most time consuming function in the workflow. Its relative contribution increases with
the number of simulations, but remains low compaired to the simulation time itself (14.3% of the
run_calibration runtime for 1000 simulations).

Therefore, we investigated the speedup ratio of the run_calibration phase. The speedup ratio
𝑆(𝑝) is defined here as the ratio of the time required by the sequential algorithm 𝑇 (1), to the time
required by parallel algorithm using 𝑝 processors to solve the same problem, 𝑇 (𝑝):

𝑆(𝑝) =
𝑇 (1)

𝑇 (𝑝)
(2.2)

With MPI, the master node does not contribute to the parrallelized calculations, thefore 𝑝 refers is
this study to the number of slave nodes, eg. the number of nodes mobilized through SLURM minus
one. The speedup ratio is computed based on the data provided by CProfile. Time data is reported in
seconds.

The speedup ratio is closed to the ideal value (number of slave nodes), as seen in Figure 15 and
figure 16. The speedup ratio is independant of the number of simulations. This scalability profile is
very similar to the one obtained on x86 and presented in the previous deliverable.

Figure 15: Table of the speed ratio correlation to simulations number and slave nodes numbers.
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Figure 16: Speed ratio correlation to simulations number and slave nodes numbers.

Simulations have been performed on a x86 architecture Intel® Core™ i7-9850H CPU 2.59 GHz to
compare the runtime of the workflow on with IRENE ARM processors. Runtime increases significantly
on ARM from x86, as expected. The total runtime increases by 4.1 to 5.2, with no visible correlation
to number of simulations. The increase on the run_calibration phase is slightly more important on
low number of nodes, see figure 17.

Figure 17: CPU time increase on ARM processors compared to x86 on MPI paralleled part of the
workflow.

2.2.3 Conclusion

Simulation is the time consuming part of the workflow, which was scaled through embarrassing
parallelism. The speedup ratio on the simulation phase is almost equal to the number of slave nodes
used, therefore the scalability is ideal on this part.
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The workflow also has embarrassing parallelism on the most RAM consuming part, which is the
simulation. Some optimisations were made on the quantity of data to keep in memory after each
simulation to aggregate and exploit the results. As a result, we observe a low RAM need increase
while the simulation number increases. We can anticipate a maximal request for our workflow of
38GB for 1million simulations, which is very reasonable for EUPEX purpose.

Therefore, we conclude that the workflow performance profile is ready for interfacing with IFS workflow
and suited to large simulations at Europe Scale on EUPEX ARM nodes.

Containerization technologies offers great opportunity to port compiled and interpretable codes from
x86 to ARM architecture. It guarantees compatibility of x86 applications for a deployment on ARM,
without code adaptation and all the associated costs (developers training, maintenance of a double
codebase...). This turnkey solution could be a major asset to ease adoption of EUPEX solution.

RAM usage remains the same compared to x86 processors, which is essential regarding High
Bandwidth Memory limitations on ARM architectures. However, we observed an impact on computing
performance. Future work on EUPEX architecture should investigate how this computing time
increase and the ARM energy consumption saving offset each other in the total energy consumption
balance.
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2.3 Artificial Intelligence for Earth Observation - AI4EO

Earth observation (EO) is one of the main applications of the Space industry as it enables us to
monitor land and ocean processes, to analyse the dynamics at work and in the end monitor the
earth system. Due to the advent of modern EO programs such as Copernicus of the European
Space Agency (ESA) [14], a wide variety of open high-resolution and multi-temporal Remote Sensing
(RS) data are available at the global level and can be exploited by research communities, agencies
and industry. The fleet of satellites of Copernicus (i.e., Sentinels) includes a wide variety of RS
instruments (i.e., active and passive sensors with different resolutions) and can acquire more than
12TB of data per day.

The use case represented by this application “Artificial Intelligence for Earth Observation (AI4EO)”
provides a processing workflow able to automatically generate classification maps at large scale (i.e.,
country scale) in an unsupervised way (i.e., assuming that no new annotated training data will be
collected). It leverages the availability of: (i) publicly available land-cover maps, (ii) high resolution RS
data, and (iii) street-level crowdsourcing geo-tagged images. To combine the information provided by
the satellite and the street-level images, the workflow leverages the capability of Machine Learning
(ML) and Deep Learning (DL) models to extract high level semantic features from both the RS
data and crowdsourcing images in order to automatically detect reference samples belonging to the
same land-cover class. To enable the production of classification maps at large scale, the ML and
DL models that are part of the workflow are based on parallel algorithms that can scale on High
Performance Computing (HPC) systems.

The first step of the workflow is to retrieve the time series of Sentinel-2 images from the Copernicus
Open Access Hub. The images are then pre-processed. The next step is to cluster the pre-processed
data to identify the samples that have the highest probability of being accurately associated with
their land cover classes. The output of this step is next fed to a classifier. Finally, the output of
the classifier is the land classification map. A detailed explanation of the three steps is available in
EUPEX Deliverable 3.1.[10]

2.3.1 Clustering Optimisation on A64FX with SVE

In this deliverable, we focus on the clustering of the remote sensing data which is a part of the sample
extraction and model training stage of the workflow. In order to annotate large volumes of unlabelled
remote sensing data, we need a clustering solution that can efficiently scale on HPC systems. We
choose to use HPDBSCAN (Highly parallel density based clustering for applications with noise) which
is a parallel implementation of the popular clustering algorithm DBSCAN (Density based clustering of
applications with noise).

HPDBSCAN

Highly parallel DBSCAN (HPDBSCAN) [15] is a shared- and distributed-memory parallel implemen-
tation of the density based spatial clustering for applications with noise (DBSCAN) algorithm. The
stages of clustering in HPDBSCAN can be broadly divided into four major stages.
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1. In the first step, all processors load the entire dataset in equal-sized chunks in parallel. Each
of the ’d’ dimensional data points is assigned to a unique spatial cell corresponding to their
location within the data space with respect to the given distance function.

2. The data points are then sorted so that points close to each other are placed together in
memory. The data points are sorted using a hash map indexed by the unique cell number.
Each entry in the hash table contains the pointer to the data point in the memory and the
number of points in that cell. The points in a cell are placed consecutively in the memory and
are redistributed among the parallel processors. Each parallel processor must also rebuild its
data indices to account for newly distributed sorted data. To balance the computational load for
each processor, a simple cost heuristic calculates the number of comparisons between each
point in a cell and its neighbourhood. Based on the computed cost, the subspaces are divided
among the processors. This helps balance the computation load, especially in highly skewed
datasets.

3. The next step is the local computation of clusters carried out by each parallel processor. As this
stage is the most compute-intense stage of the clustering process, we focus on vectorization of
this stage using the Scalable Vector Extensions supported by the A64FX processor. Here, the
points are iterated over in parallel using OpenMP threads, and the neighbours are computed
using the Euclidean distance measure. Each point is classified as either a core point or not
based on the number of neighbours and on whether its neighbours contain a core point so
that the cluster labels can be updated accordingly. We discuss this stage in detail in the next
section as we explain our different approaches to parallelization.

4. The final stage is the rule-based merging of clusters. Here we make use of the labels of the
halo cells in order to merge clusters that are computed by more than parallel processor. Halo
cells are cells that border the subspace of points that are allotted to a processor. They are
points in a one-cell layer of thick cells surrounding a subspace. These points are redundant
across neighbouring processors and cluster labels of these points are used to merge parts of
the same cluster that lay across multiple grid spaces. The cluster labels are broadcast so that
each node will directly map the local cluster label to a global one.

The stages of HDBSCAN are illustrated in Figure 18.

Figure 18: Schematic overview of HPDBSCAN
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Optimization of HPDBSCAN

The heart of the HPDBSCAN application lies in the computation of distances from a given point to
other points in the dataset. The C++ code to compute the Euclidean distance computation between
’point’ and ’other_point’ of dimension ’dimensions’ is as follows.

1 for (size_t d = 0; d < dimensions; ++d) {
2 T distance = point[d] - other_point[d];
3 offset += distance * distance;
4 }

In the code snippet shown above, the variable ’offset’ stores the computed distance. Please note that
computing the square root of the distance has been omitted as the distance values only need to be
checked against the squared 𝜖 value. We checked with GCC 11.2 and ARM CLANG compilers on
the A64FX patrition of the Irene High Performance Cluster. The source code was compiled using
the -mpcu=a64fx flag with the -O3 optimization flag. On studying the generated assembly using the
objdump tool, we found that both the compilers failed to vectorize the loop using SIMD instructions.
With the help of SVE intrinsics provided by the arm_sve.h header file, the straightforward way to
vectorize the loop would be use predicates to check if the loop count is less than ’dimensions’ and
load the SVE register which is of size 512 bits with the maximum number of elements that is possible
for an iteration and compute the distance.

The key drawback of this straightforward approach is that the number of elements that can be loaded
per iteration is limited by the dimensions of the data point. The datasets which we experimented
with had dimensions that were mostly within 5 and it is quite rare to come across a dataset that has
dimensions that are more than 16 in the case of double dimension floating point values or 32 in the
case of single-dimensional floating point values.

In order to exploit the large width of the SVE registers, we load each of the data point coordinates
into separate SVE registers. HPDBSCAN sorts the data points in the indexing phase and lays them
out consecutively in the memory. A point located close to each other spatially is also placed together
in the memory. Hence, while we compute the neighbors of each point in a subspace, most of the
neighbors are likely to be already loaded in the cache memory as the potential neighbors of points
within a subspace allotted to the processor are likely to be the same. Our measurements of the cache
hit rate using Performance Application Programming Interface (PAPI) revealed an average hit rate of
98% for L1 cache and 77% hit rate for the L2 cache implying that only 0.46% of the memory access
was from the L3 cache or the RAM. This also implies that the application is mostly compute bound
and effective use of SVE intrinsics is important to achieve any significant performance improvements.
With the points and their coordinates placed consecutively in the memory, we could easily load the
coordinates into different SVE registers.

Figure 19 illustrates the memory layout of a three dimensional dataset and how the SVE registers
can be used to efficiently vectorize the Euclidean distance computation.

Here SVE_X, SVE_Y and SVE_Z are SVE registers that store the x, y and z values of the ’j’ data
points in each iteration. Note that for every iteration, ’j’ coordinates can be loaded into ’d’ SVE
registers where ’j’ is the number of floating point elements that can fit in the SVE register and ’d’ is
the dimension of a data point. The x, y and z coordinates of point ’P’ from which the distances to
its neighbours must be computed are broadcasted into the SVE_Px , SVE_Py and SVE_Pz SVE
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Figure 19: Memory layout of a three dimensional dataset

registers respectively. This has to be done just once before the distance computation loop begins. In
order to compute the Euclidean distance, we need to execute the following equation in the distance
computation loop.

𝑆𝑉 𝐸_𝑑𝑖𝑠𝑡 = (𝑆𝑉 𝐸_𝑋 − 𝑆𝑉 𝐸_𝑃𝑥)2 + (𝑆𝑉 𝐸_𝑌 − 𝑆𝑉 𝐸_𝑃𝑦)2 + (𝑆𝑉 𝐸_𝑍 − 𝑆𝑉 𝐸_𝑃𝑧)2

Now that we have the distances stored in the SVE_dist register, we need to check if it is less than
𝜖 The conditions to check if the Euclidean distance is less than 𝜖 and if a point is a core point can
be easily vectorized using SVE predicates. The complete C++ implementation of the ’indexQuery’
function using SVE intrinsics for a single precision multidimensional floating point dataset is given
below.

1 for (size_t i = 0; i < n; i += svcntw()) {
2
3 svbool_t pg = svwhilelt_b32(i, n);
4
5 svuint32_t sv_indices = svld1_u32(pg, &neighboring_points[i]);
6
7 /*scaled_index = index * dimensions */
8 svuint32_t sv_indices_scaled = svmul_n_u32_z(pg, sv_indices, dimensions);
9

10 svfloat32_t results_v = svdup_n_f32(0.0f);
11
12 for(size_t d = 0; d < dimensions; d++) {
13
14 svfloat32_t point_coordinate_v = svdup_n_f32(point[d]);
15
16 /*scaled_index + d */
17 svuint32_t other_point_index = svadd_n_u32_z(pg, sv_indices_scaled, d);
18
19 /*load points from memory onto SVE register */
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20 svfloat32_t other_point_coordinate_v = svld1_gather_u32index_f32(pg,
&neighbouring_points_ptr[0], other_point_index);

21
22 svfloat32_t diff_v = svsub_f32_x(pg, other_point_coordinate_v,

point_coordinate_v);
23
24 svfloat32_t diff_square = svmul_f32_x(pg, diff_v, diff_v);
25
26 results_v = svadd_x(pg, results_v, diff_square);
27
28 }
29
30 /*check if distance is epsilon^2 */
31 svbool_t mask = svcmple_n_f32(pg, results_v, EPS2);
32
33 /*count the number of points within epsilon distance */
34 count += svcntp_b32(pg, mask);
35
36 /*load only cluster labels of distances less than ESP2 */
37 svint32_t cluster_labels_of_neighbours = svld1_gather_u32index_s32(mask,

&clusters[0], sv_indices);
38
39 /*if cluster label < 0, then it is a core point */
40 svbool_t core_points = svcmplt_n_s32(mask, cluster_labels_of_neighbours, 0);
41
42 cluster_labels_of_neighbours = svabs_s32_z(core_points,

cluster_labels_of_neighbours);
43
44 /*Get the lowest cluster label among all the core points */
45 cluster_label = std::min(cluster_label, svminv_s32(core_points,

cluster_labels_of_neighbours));
46
47 svst1_u32(mask, &min_points_area[i], sv_indices);
48
49 }
50
51 return cluster_label;

Note that a count variable has been added to keep track of the number of points that lie within 𝜖 radius
of point ’p’. Once the ’indexQuery’ function returns the cluster label for the currently computed cluster,
HPDBSCAN updates the label for all the core points encountered in the current cluster. Hence, we
need to revisit the core points again. Here, we use the std::remove function to remove the references
to INT_MAX leaving us only references to the core points in the min_points_area vector. The C++
snippet for updating the cluster rules is given below.

1 /* Keep only core points in min_points_area vector *
2 auto end = std::remove(min_points_area.begin(), min_points_area.end(), INT_MAX);
3
4 if (min_points_area.size() >= m_min_points) {
5 /* set the label to be negative as to mark it as core point */
6 atomic_min(clusters.data() + point, -cluster_label);
7
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8 for (size_t other : min_points_area) {
9 // if point is a core point

10 Cluster other_cluster_label = std::abs(clusters[other]);
11 // check whether the other point is a cluster
12 if (clusters[other] < 0) {
13 const std::pair<Cluster, Cluster> minmax = std::minmax(cluster_label,

other_cluster_label);
14 rules.update(minmax.second, minmax.first);
15
16 }
17 // mark as a border point
18 atomic_min(clusters.data() + other, cluster_label);
19 }
20 }
21 else if (clusters[point] == NOT_VISITED) {
22 /* mark as noise */
23 atomic_min(clusters.data() + point, NOISE);
24 }

As the iterations localDBSCAN function are parallelized using shared memory parallelism offered
by OpenMP, overlapping of the epsilon neighbourhood from different threads can happen leading
to a data race condition. In order to avoid this, HPDBSCAN uses a simple atomic min operation to
set the cluster label and the core property at once. Also since we know that the indexQuery function
already returns the min cluster label, we can do away with the use of std::minmax() function and
directly update the rules with the new cluster label. Finally, the check for NOT_VISITED can also be
avoided as it is unnecessary. If a point has been assigned a label already, it will keep the label as the
label will obviously be smaller than NOISE as NOISE is defined as the maximum integer value -1.
And if it is not a part of any cluster, atomic min will result in its label being unchanged, hence keeping
its label as NOISE.

Having seen around 40% improvement in execution times with the changes listed above, we then
experimented by increasing the OpenMP dynamic chunk size further from 40 up to 4096 where we saw
the highest performance improvements. Beyond 4096, we saw that the performance improvements
due to shared memory parallelism began to stagnate. A large dynamic chunk size ensures that too
many atomic min operations are not carried out in the same memory location.

2.3.2 Experimental Evaluation

HPDBSCAN is already proven to be highly scalable both at the node and thread levels [15]. In this
section, we will describe the methodology and findings of the experiments conducted to evaluate
the optimizations implemented in HPDBSCAN which were discussed above. The main focus of the
investigation is to show the performance improvements over the non-vectorized implementation or
one that was only subjected to vectorization by the compiler. The performance evaluation of the
optimizations on various datasets with respect to computation time, memory consumption, and the
parallel programming metrics speed and scale-up are described in detail.
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Hardware Setup

We evaluated the performance of the vectorized code on a A64FX cluster of the Irene supercomputer.
A description of the configuration of the A64FX cluster is presented in section 1.

Software Setup

The operation system running on Irene is Red Hat Enterprise Linux Fedora version 8.6. All applications
in the test have been compiled with the FUJITSU compiler 4.8.1 using the optimization level ’-Kfast’
and architecture flag ’-KA64FX ’. The MPI distribution on Irene is Open MPI version 4.0.5. For the
compilation of HPDBSCAN, a HDF5 development library including headers and C++ bindings is
required. For HDF5, we used the preinstalled version 1.12.0.

Evaluation of Speed Up Using Vectorized HPDBSCAN

We benchmark the optimized HPDBSCAN application’s speed-up using the remote sensing dataset
first. The dataset consists of 1827972 entries where each entry consists of a 5 dimensional value of
spectral indices. The spectral indices are stored in single precision floating point format. Our principal
methodological approach is thereby as follows. Each benchmark is run five times, measuring the
application’s wall time at the beginning and end of the main() function of the process with the MPI rank
0 and the OpenMP thread number 0. After these five runs, we double the number of nodes and cores.
We first evaluate the performance at the core level by increasing the number of OpenMP threads
from 0 to the total number of cores in a node which is 48 so that each thread runs on a distinct core.
We measure the runtimes of both the vectorized code and the non optimised implementation and
plot the runtimes against the number of cores. In addition to that, we have run a base measurement
with exactly one core on one node. We also evaluated the distributed memory scalability of the
application using MPI keeping the number of threads or the number of tasks per MPI rank at one. We
increase the number of cores from 1 to a maximum of 960. We calculated the efficiency for each
set of runs using the average runtime. Efficiency was calculated as 𝑆𝑝𝑒𝑒𝑑𝑢𝑝/𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑒𝑟𝑠.
The efficiency observed in only OpenMP parallelization and only MPI parallelization are illustrated in
Figure 20 and 21 respectively.

There is a significant drop in the efficiency in the optimized code when only MPI parallelization is
enabled. With a constant problem size, besides the increased MPI communication overhead in both
the optimized and the non optimized versions, the vectorization overhead in the optimized version
begins to offset the performance gains even further.

We then run the application to evaluate the performance of both node and core (MPI/OpenMP) hybrid
scalability. We use all the cores available per node and increase the number of nodes from 1 to up
to 76. Figure 22 shows the mean runtimes plotted against the number of nodes. Figure 23 shows
the efficiency observed in hybrid parallelization. One can see that the runtime of the optimized
HPDBSCAN reaches its lowest value of 4s in about 16 MPI ranks itself after which, the efficiency
of the optimized implementation decreases drastically as the scope for parallelization of the task
assigned to each MPI rank becomes almost negligible as the problem size remains constant.
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Figure 20: Efficiency observed in OpenMP par-
alellization

Figure 21: Efficiency observed in MPI only paral-
lelization

Figure 22: MPI/OpenMP hybrid scalabilty
Figure 23: Efficiency observed in OpenMP/MPI

parallelization

The speed-up due to the optimizations on a single core and on a single node comprising of all the 48
cores is illustrated in Figure 24 and Figure 25 respectively.

We analyzed the energy consumption of both the optimized and the non-optimized versions of
HPDBSCAN. There is a 50% decrease in the energy consumption in the optimized version as shown
in Figure 26. The energy consumption was measured using the perf tool to count the following PMU
(Performance Monitoring Unit) counters - EA_CORE, EA_L2 and EA_MEMORY. According to the
A64FX PMU manual, EA_CORE counts the energy consumption per cycle of the cores. EA_L2
counts the energy consumption of the L2 caches per cycle in a CMG. EA_MEMORY measures the
energy consumption per cycle of the core memory group (CMG).
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Figure 24: Performance on a single core Figure 25: Performance on a single node.

Figure 26: Comparison of energy consumption of optimized HPDBSCAN and non-optimized HPDB-
SCAN

2.3.3 Perspectives for Classifiers

We also worked on the classifier training phase, which is typically performed on GPUs. We have
observed that on a large scale and for heavy models, the use of data parallelism alone has two types
of limitations. Firstly, the communication costs incurred by the data parallel approach, which consists
in updating the weights with an MPI_All_Reduce operation, becomes very high as the size of the
model increases and the number of nodes involved in the Reduce operation grows. Furthermore,
this approach increases the batch size linearly with the number of involved compute nodes, which in
turn requires a fine control of the learning rate to maintain the same accuracy, thus slowing down the
training process.

To limit these data-parallel drawbacks, one approach is to combine the data-parallel and model-
parallel approaches. Model parallelism is an approach in which the model itself is distributed across
several compute nodes. Thus, activations must be communicated between participating nodes, but
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the reduction operation between 𝑁 nodes of a 𝑊 data volume can be replaced by 𝑘 smaller reduction
operations, each involving 𝑁/𝑘 nodes and a 𝑊/𝑘 data volume, which is much more favourable.

However, this approach is difficult to implement for several reasons.

On the one hand, to speed up computation, a pipelined approach is required to complement model
partitioning, in which several micro-batches are injected in sequence to deliver parallel acceleration.
The pipeline itself is complex to manage, because the optimal sequence of forward and backward
tasks is non-trivial to determine. Increasing the number of micro-batches is one way of increasing
resource utilization, but it also results in higher memory consumption. It is then possible to limit
memory consumption by using approaches based on re-materialization of activations to save memory,
which in turn modifies the load balancing between the GPUs involved in the model parallel approach.
Recently, several strategies have been proposed to better organize pipelines to limit idle time on
GPUs (Hanayo [16] , Chimera [17], Pipedream [18], MadPipe [19]) and practical and efficient tools
are available for re-materialization [20], but these approaches do not explicitly take into account the
characteristics of the models and the computing platform, and the combination of model parallelism
and re-materialization approaches remains an open problem.

On the other hand, model parallelism alone cannot achieve very high scalability, and it needs to be
combined with data parallelism to scale up to thousands or tens of thousands of GPUs. Determining
how to partition resources between data parallelism and model parallelism, and how to allocate
the different layers onto the platform, are very difficult problems. Recently, frameworks such as
DeepSpeed [21], ColossalAI [16]or Megatron-LM [22] have been proposed (see [23] for a recent
survey), have tackled the issue but without without explicit consideration of the characteristics of the
model and the computing resources.

We have taken these tools in hand and started work on formalizing optimization algorithms combining
data-parallelism, model-parallelism and re-materialization. In the coming period, our aim is to apply
these techniques to classifier training to improve AI4EO accuracy and scalability.

2.3.4 Conclusion

Vectorization of the most compute intensive part of the HPDBSCAN gave a 66% reduction in execution
time and a 50% equivalent decrease in the total energy consumption of the algorithm. Efficient
usage of SVE intrinsics can result in significant improvements in application performance when
the compiler is unable to exploit the opportunities to vectorize the code. Compiling the code using
the Fujitsu compiler contributed to around 8% reduction in the execution time. We explored setting
the environment variables with different page policies (demand/prepaging) but we did not see any
significant performance improvements. We also tried the ’-Kzfill’ flag which automatically allocated
space in the cache for writing array data in a loop without writing them to memory. However, that
too did not yield any further performance improvements. This is probably due to the fact that the
optimization works best for sequential access and for code without frequent branching which is not
the case with HPDBSCAN. As the application is compute bound, it is prudent to optimize the most
compute intensive kernels which in our case was the local DBSCAN computation to realize significant
performance improvements.
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2.4 SPECFEM3D

In the EUPEX project, we introduced a workflow for constructing a probabilistic scenario tailored
for engineering applications. In this phase of the project, our emphasis has been on SPECFEM3D,
which constitutes the component of the workflow demanding the highest computational resources.

The SPECFEM codes leverage the spectral-element method for simulating seismic wave propagation
across various scales. Alongside specialized inversion tools, these codes form an ecosystem
within computational seismology, serving to tackle a wide range of issues associated with seismic
tomography and ground-shaking hazard analysis. In EUPEX, we focused on SPECFEM3D_Cartesian
that simulates acoustic (fluid), elastic (solid), coupled acoustic/elastic, poroelastic or seismic wave
propagation in any type of conforming mesh of hexahedra (structured or not). It employs a high-
order spectral-element discretization for unstructured hexahedral meshes. The required input data
encompasses topography, 3D wave speed, density, and attenuation fields. The code exhibits scalable
performance that is exascale-ready ([24] and related deliverables) and is compatible with the largest
supercomputers globally, including LEONARDO (CINECA) and NVIDIA H100 GPU clusters. This
solver has been actively adopted within the seismological community for numerous years, as it
supports MPI, OpenMP, CUDA, and HIP GPU acceleration.

The code is primarily written in Fortran and C, and there is an ongoing assessment in the community
regarding the potential to rewrite it in C++ while considering the adoption of Kokkos. Kokkos is a C++
programming library designed for building high-performance applications on parallel architectures
and GPU accelerators. It is created to enable programmers to write code that is portable across a
wide range of hardware without having to craft separate implementations for each architecture.

2.4.1 Optimisations

In [10], we conducted a performance analysis of the SPECFEM3D solver, specifically following its
porting onto the Irene system Irene@TGCC. The application analysis was specifically centered
around porting the SPECFEM3D miniapp (OPT), developed in the framework of CHEESE CoE, onto
the A64FX architecture. Subsequently, we tested its performance, taking into account the Scalable
Vector Extension (SVE) and optimizations introduced by CHEESE. Following this analysis, the OPT
had already proven to be efficient for SVE. In this deliverable, we assess the code’s performance and
efficiency, considering the the use of High Bandwidth Memory (HBM). The simulations have been
performed on a use case on 4 nodes. The metric included in the table in Figure 27 illustrates that the
optimized version (OPT) performed on Irene@TGCC better than the default version of SPECFM3D in
all the metrics concerning HBM (Read/Write/Bandwith). Yet, the test on Galileo100 at Cineca still
exhibits better overall memory performance.

Regarding computational power (MFLOPS) and Instructions Per Cycle (IPC), the OPT version
consistently demonstrates superior performance, while Galileo100 stands out as the top performer
(see table 1).

It is important to note that the benchmark is not complete in terms of bandwith analysis since it would
have required of a largest use case in term of mesh size.
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Figure 27: Comparison between OPT and DEFAULT version for HBM metric on Irene@TGCC and
Galileo100@CINECA)

IPC MFLOPS

DEFAULT OPT DEFAULT OPT

Irene@TGCC ARM 0.84 0.96 312.044 418.936

Galileo100 (CINECA) 1.44 769.003

Table 1: Computational power (MFLOPS) and Instructions Per Cycle (IPC) comparisons between
OPT and DEFAULT version on 4 nodes each

The solver part is already optimized for GPUs, particularly NVIDIA GPUs, without bottlenecks [24]
even at a large scale.

2.4.2 Conclusion

The application analysis is focused around the SPECFEM3D miniapp porting (OPT), developed in the
framework of CHEESE CoE, onto the A64FX architecture and in particular on the impact of HBM.

Furthermore, the optimized version (OPT) outperformed by 25% the default version across all the HBM
metrics on Irene@TGCC. These metrics list read, write, and bandwidth parameters. Nevertheless,
the same version of the code on production system Galileo100 (x86 architecture) still shows better
performance.

It is important to note that increasing the size of the use case (i.e. increasing the number of mesh
elements) will lead to even better results for the optimized version. Regarding raw computational
power (MFLOPS) and Instructions Per Cycle (IPC), the optimized version consistently exhibited better
capabilities by 10-20%.

Considering the simulation optimization on GPUs, some analyses, performed in depth jointly with
CHEESE/CHEESE-2p COE, show the absence of significant bottlenecks even at large scales [24].The
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code thus turns out to be optimized for this type of architectures especially, but not only, with regard
to NVIDIA GPUs, which within the seismological community is the most widely adopted.
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2.5 ESPRESO FEM

ESPRESO is a highly parallel library for solving engineering problems. It contains several modules
that were analysed in [10]. This report focuses on the improvement of the regions in the hot loop
of the computation: (a) assembler of system matrices that are built from a description of physical
properties defined by a user and (b) solution of the assembled system by a FETI (Finite Element
Tearing and Interconnecting) solver.

In general, the assembler gathers coordinates (and possibly some physical parameters) for each
element, computes required operations, and stores the element matrix into a system matrix. It was
optimised by vectorization for the SVE instruction set. Optimisations are described in Section 2.5.1.

The assembled system matrix is solved by our in-house implementation of FETI-based algorithms.
These methods decompose a problem into smaller non-overlapped parts, subdomains, glued together
by Lagrange multipliers (reaction forces between subdomains). Then, the solution is computed by
a combination of iterative and direct solvers - subdomain solutions are computed by the third-party
direct solver and optimal Lagrange multipliers are computed by the iterative solver. Optimisations of
the FETI solver are described in Section 2.5.2

2.5.1 Optimisations of FEM Kernels for SVE

ESPRESO solves engineering problems based on Finite Elements Methods [25] (FEM). Input for
these methods is usually a set of physical parameters in the form of material properties, initial
conditions, and boundary conditions defined on a numerical model. The numerical model is usually
an unstructured mesh composed of nodes and elements. Both nodes and elements are usually
divided into regions. These regions can be used to set different physical parameters for different
model parts. Then, during the simulation, the physical parameters are transformed into a system of
linear equations by local matrix kernels that are applied to each mesh element.

In the case of explicit evaluation of the global linear system, the kernels can represent a significant
part of the overall simulation time. In the case of matrix-free methods, assembling a global system
is avoided; thus, kernels dominate the computation time. Hence, the optimisation of the kernels
towards efficient utilisation of modern architectures was investigated by many researchers. Usually,
it includes some code modifications allowing SIMD instructions and hardware units to be used. In
ESPRESO, we implemented vectorization combining cross-element vectorization and cache-blocking
optimisation.

In cross-element vectorization, small matrix and vector operations in kernels are performed across
multiple input elements, i.e., rather than computing operations of a single element in SIMD fashion, the
same operation is applied to data from several independent elements inside the vector in parallel [26].
The advantage of this approach is its flexibility since it can be easily modified to work effectively for
varying vector lengths. It only requires organising elements in groups of elements with the same
attributes so that a single algorithm can be applied to all and a specific data layout in memory to
effectively move data in and out of registers.

In the FEM assembler, kernels producing the output matrix are usually broken down into several
distinct operations for re-usability and maintainability reasons. These operations can then be applied
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consecutively to obtain the desired result for an entire range of input elements. This is, however, not
optimal as it unnecessarily increases the cache pressure for larger domains. In cache blocking
optimisation described in [27] in detail, all functions are applied to the subset of the input range
before processing of another subset begins. This significantly improves caching performance and
works seamlessly with cross-element vectorization. Usage of cache-blocking techniques in the
context of FEM methods can be seen in [28].

The implementation of the above techniques with the achieved speed-up is described in the next
subsections.

Original Implementation

This section describes an original implementation of the FEM kernel for heat transfer. It is a
simple physics with one degree of freedom for each node selected for its simplicity of description.
However, all other physics are based on the same principles. Thus, all techniques described can be
straightforwardly applied to other physics in ESPRESO or other FEM libraries.

A concept of FEM kernels is described by a pseudo-code in Listing 2.1 where element matrix K is built
for a general element. Several blocks in the kernel can be identified. On lines 14 – 17, values from
global arrays are gathered, i.e., values are indirectly copied to local variables according to element
nodes. Then, the integration loop over all Gauss points (GPs) is performed. An element is integrated
on lines 21 – 23, and temperature-gradient interpolation matrix dND is computed. At the end, we
compute the contribution to element matrix K inserted into a global matrix used in the FETI solver.
The kernel would be straightforwardly enhanced if a user sets more initial or boundary conditions or
requests some outputs from the computed values (e.g., temperature gradient).

1 void heat_transfer(
2 const Settings &settings,
3 const double *w,
4 const Vector<setting.nodes> *dN,
5 const Point3D *coo,
6 const double *temp,
7 const double *gradient,
8 const double &c,
9 Matrix &K

10 {
11 Matrix<settings.nodes,3> elm_coo;
12 Vector<settings.nodes,3> elm_temp;
13 for (int n=0; n<settings.nodes;++nodes) {
14 elm_coo[n][0] = coo[settings.node[n]].x
15 elm_coo[n][1] = coo[settings.node[n]].y
16 elm_coo[n][2] = coo[settings.node[n]].z
17 elm_temp[n] = temp[settings.node[n]]
18 }
19
20 for (int gp=0; gp<settings.gps; ++gp) {
21 // integration
22 Matrix<3,3> J = dN[gp] * elm_coo;
23 double det = determinant(J);
24 Matrix dND<3,settings.nodes> = inversion(det, J) * dN[gp];
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25 // evaluation K,
26 K += det * w * c * tran(dND) * dND;
27 if (settings.physical_parameter_X) {
28 K += ...;
29 }
30 if (settings.compute_gradient) {
31 gradient = ...;
32 }
33 }
34 }

Listing 2.1: Pseudo-code of a basic FEM kernel

In general, each FEM kernel contains a large number of operations with small vectors and matrices.
The number of these operations increases with the element size (due to more GPs; the loop counter
on line 20) and with the boundary conditions (physical parameters) that must be considered during
the computation (e.g., if statement on lines 27 – 29). The performance of these operations can be
improved by vectorization. In an ideal case, the compiler vectorizes the majority of code automatically.
However, according to the measurement, the original kernels compiled by the Fujitsu compiler
contain no vectorized instructions even though the flags turning on the vectorization were used
(-march=armv8.2-a+sve -KSVE). Hence, kernels were optimised by the techniques described in the
following subsections to improve their performance.

Cache Blocking Optimisations

This section describes the first part of the optimisations focused on the better utilisation of caches
and transforming run-time parameters to compile-time parameters allows the compiler to build a code
tailored to a particular element type.

The implemented optimisation heavily utilises class templates. It allows the creation of temporal
kernel data on the stack and calls a set of required operations on this data kept in caches. Hence,
independent of the number of physical parameters, input data is loaded from the memory only once.
In addition, to avoid re-implementing the code for processing a particular physical parameter, the
kernel is divided into small sub-kernels from which a final kernel is built.

1 template<int nodes, int gps, int dim, int param1>
2 struct Physics {
3 struct Element {
4 alignas(SIZE*sizeof(double)) SIMD coords[nodes][dim];
5 alignas(SIZE*sizeof(double)) SIMD cond[gps][dim*dim];
6 // the rest of the element parameters
7 }
8
9 virtual void apply(Element &e) = 0;

10 };
11
12 template<int nodes, int gps, int dim, int param1, class Physics>
13 struct ElementAction: Physics {
14 void apply(typename Physics::Element &e) { ... }
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15 };

Listing 2.2: Structure for creation local data on the stack and element action (sub-kernel)

The main challenge of the implemented approach is passing local data computed by one sub-kernel
to another. It is solved by a structure Physics described in Listing 2.2. This structure must be inherited
by all sub-kernels available for an element described by the nested class Element. Inside the kernel,
this nested structure (Physics::Element) is created as a local variable on the stack and passed to the
pure virtual function apply(Element &e). The structure must contain all variables available across
more sub-kernels.

The datatype of all variables should be SIMD with proper alignment. Datatype SIMD can be an alias
for double or an array of SIZE elements in the case of cross-element vectorization described in the
next subsection.

Listing 2.2 also contains an example of a sub-kernel ElementAction. It must inherit from the Physics
structure and implement the apply function. Both structures Physics and ElementAction are templates
with chosen compile-time parameters. It allows the compiler to optimise sub-kernels for different
parameters (e.g., element type). The partial specialization allows programmers to distinguish between
different versions of the code if needed (e.g., different codes for 2D and 3D sub-kernels). The sub-
kernel can be utilized by more physics as long as the variables in the Physics::Element structure
used by the apply function are the same (e.g., gathering coordinates for all implemented physics).

1 template<int nodes, int gps, int dim, typename Physics>
2 void loop(Settings &settings, size_t elements) {
3 Physics<nodes, gps,...>::Element element;
4 SubKernel1<nodes, gps,...> subkernel1(...);
5 SubKernel2<nodes, gps,...> subkernel2(...);
6
7 // main loop over all elements
8 for (size_t c=0; c<element/SIZE; ++c) {
9 if (subkernel1.isactive) {

10 subkernel1.apply(element);
11 }
12 if (subkernel2.isactive) {
13 subkernel2.apply(element);
14 }
15 // ...
16 }
17 }

Listing 2.3: A loop over all elements

An example of a modified kernel is in Listing 2.3. Initially, the kernel creates element with kernel local
data and initiates all sub-kernels. Then, active sub-kernels are called inside the loop. Even though
there are if statements in the hot loop, they have negligible overhead since conditions are always
evaluated to the same value. It is achieved by grouping elements with the same type and parameters
into the same group and calling the loop for each such group separately. Since the number of nodes,
GPs, and other parameters that determine the size of matrices, vectors, and other temporal variables
are template parameters, it is possible to create element on the stack.
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To efficiently utilise SIMD registers within the loop, the apply function should be implemented to
process more elements at once (cross-element vectorization). From the implementation point of view,
it means using a vectorized datatype instead of the double datatype and appropriately reducing the
loop counter (the loop is called only element / SIMD times). The next section describes the vectorized
SIMD structure in more detail.

Cross-Element Vectorization for SVE

Typically, the compiler automatically drives the process of code vectorization with little to no control
from the developer side. Auto-vectorization requires no effort besides setting correct compilation
flags and is also very portable. However, its effectiveness might be limited in some cases. In the
area of FEM kernels, this process is even more challenging due to the many elements with different
dimensions, nodes, and GPs that must be compatible with SIMD register sizes.

An elegant way of vectorization is proposed by cross-element vectorization. In this approach,
processing a single element is substituted by processing multiple elements simultaneously. If the
number of simultaneously processed elements is equal to the width of SIMD registers, it is enough
to substitute all operations with double by operations with arrays (e.g., __m128d in the case of the
SSE2 intrinsic instruction set). In C++, a straightforward approach is to provide a special structure
encapsulating an array of doubles with overloaded operators and required mathematical functions.

Examples of structures for cross-element vectorization can be found in Listings 2.4 and 2.5. Both
structures provide the same functionality. The difference is in internal data representation. The
structure in Listing 2.4 stores the array of doubles as svfloat64_t with 512-bit size. The structure
in Listing 2.5 stores data as std::array<double, 8>. Whereas the former is the datatype provided in
header <arm_sve.h>, the latter is a workaround if the former is unavailable.

The essential requirement of cross-element vectorization, as implemented in ESPRESO, is the known
size of SIMD registers. This requirement is automatically fulfilled by intrinsics provided by x86 CPUs
architecture since the provided intrinsic functions are tied to register sizes. In the case of Arm and
SVE vector extensions, only sizeless datatypes are provided by default. This inconvenience can be
solved by typedef on line 1 in Listing 2.4 that creates a new datatype with a fixed length [6]. This
datatype can be directly used in the SIMD structure.

However, this typedef must be supported by a compiler since it is created via a compiler-dependent
__atribute__ keyword. Unfortunately, the Fujitsu compiler in version 1.1.0 does not support it. In
practice, it prevents the creation of svfloat64_t with fixed length and its usage in SIMD structures.
Listing 2.5 describes a workaround for the Fujitsu compiler. Data in this implementation are stored in
fixed-length std::array. Contrary to the former implementation, std::array cannot be directly used as
a parameter of SVE intrinsic functions. Data must always be converted to svfloat64_t by function
svld1_f64 with predicate svptrue_b64(). Even though it makes the structure slightly more complicated,
it does not have a negative impact on the performance.

The SIMD structure can be seamlessly combined with the cache-blocking optimisations described
in the previous section. To minimise overhead of the SIMD structure and calling tiny functions, the
INLINE macro is used. Depending on the compiler used, it is replaced by a compiler-dependent
keyword forcing the compiler to always inline the code. Hence, in practice, most of the kernel
code produced by the compiler comprises intrinsic functions for a particular architecture. From the
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programmer’s point of view, the SIMD structure allows the generalisation of the kernel code to have a
single implementation for each architecture and arbitrary SIMD register sizes. Adding a new vector
extension is about adding a new SIMD structure similar to in Listing 2.4 without any change in already
written code. Such implementation allows adding new features and physical parameters to kernels
with predictable performance and sufficient code portability.

1 typedef svfloat64_t __sved __attribute__((arm_sve_vector_bits(512)));
2 typedef svbool_t __svep __attribute__((arm_sve_vector_bits(512)));
3
4 struct SIMD {
5 static __svep mask;
6 __sved data;
7 enum: size_t { size = __ARM_FEATURE_SVE_BITS / 64 };
8
9 INLINE SIMD() noexcept

10 : data(svdup_n_f64(0.0)) { }
11 INLINE SIMD(__sved value) noexcept
12 : data(value) { }
13 INLINE SIMD(const SIMD &other) noexcept
14 : data(other.data) { }
15
16
17
18 INLINE SIMD& operator=(const SIMD &other) noexcept
19 { data = other.data; return *this; }
20
21 INLINE double& operator[](size_t i) noexcept
22 { return reinterpret_cast<double*>(&data)[I]; }
23
24 INLINE const double& operator[](size_t i) const noexcept
25 { return reinterpret_cast<const double*>(&data)[I]; }
26
27 INLINE SIMD operator−() const noexcept
28 { return svneg_f64_x(mask, data); }
29
30
31 INLINE SIMD operator+() const noexcept
32 { return data; }
33 }; // end of SIMD struct
34
35 INLINE const SIMD load1(const double &from) noexcept
36 { return svdup_n_f64(from); }
37
38 INLINE const SIMD load(const double *from) noexcept
39 { return svld1_f64(SIMD::mask, from); }
40
41 INLINE void store(double *to, const SIMD& value) noexcept
42 { svst1_f64(SIMD::mask, to, value.data); }
43
44
45 INLINE const SIMD operator+(const SIMD& v1, const SIMD& v2)

noexcept
46 { return svadd_f64_x(SIMD::mask, v1.data, v2.data); }
47
48
49
50 INLINE const SIMD operator*(const SIMD& v1, const SIMD& v2)

noexcept
51 { return svmul_f64_x(SIMD::mask, v1.data, v2.data); }
52
53
54
55 INLINE const SIMD operator−(const SIMD& v1, const SIMD& v2)

noexcept
56 { return svsub_f64_x(SIMD::mask, v1.data, v2.data); }
57
58
59
60 INLINE const SIMD operator/(const SIMD& v1, const SIMD& v2)

noexcept
61 { return svdiv_f64_x(SIMD::mask, v1.data, v2.data); }
62
63
64
65 // other non−member operators

Listing 2.4: fixed SVE data length structure

1 typedef std::array<double, 8> __sved;
2
3
4 struct SIMD {
5 // no fixed mask is possible
6 __sved data;
7 enum: size_t { size = 8U };
8
9 INLINE SIMD() noexcept

10 : data{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0} { }
11 INLINE SIMD(__sved value) noexcept
12 : data(value) { }
13 INLINE SIMD(const SIMD &other) noexcept
14 : data(other.data) { }
15 INLINE SIMD(svfloat64_t value) noexcept
16 { svst1_f64(svptrue_b64(), data.data(), value); }
17
18 INLINE SIMD& operator=(const SIMD &other) noexcept
19 { data = other.data; return *this; }
20
21 INLINE double& operator[](size_t i) noexcept
22 { return data[i]; }
23
24 INLINE const double& operator[](size_t i) const noexcept
25 { return data[i]; }
26
27 INLINE SIMD operator−() const noexcept
28 { return svneg_f64_x(svptrue_b64(),
29 svld1_f64(svptrue_b64(), data.data())); }
30
31 INLINE SIMD operator+() const noexcept
32 { return data; }
33 }; // end of SIMD struct
34
35 INLINE const SIMD load1(const double &from) noexcept
36 { return svdup_n_f64(from); }
37
38 INLINE const SIMD load(const double *from) noexcept
39 { return svld1_f64(svptrue_b64(), from) }
40
41 INLINE void store(double *to, const SIMD& value) noexcept
42 { svst1_f64(svptrue_b64(), to,
43 svld1_f64(svptrue_b64(), value.data.data())); }
44
45 INLINE const SIMD operator+(const SIMD& v1, const SIMD& v2)

noexcept
46 { return svadd_f64_x(svptrue_b64(),
47 svld1_f64(svptrue_b64(), v1.data.data()),
48 svld1_f64(svptrue_b64(), v2.data.data())); }
49
50 INLINE const SIMD operator*(const SIMD& v1, const SIMD& v2)

noexcept
51 { return svmul_f64_x(svptrue_b64(),
52 svld1_f64(svptrue_b64(), v1.data.data()),
53 svld1_f64(svptrue_b64(), v2.data.data())); }
54
55 INLINE const SIMD operator−(const SIMD& v1, const SIMD& v2)

noexcept
56 { return svsub_f64_x(svptrue_b64(),
57 svld1_f64(svptrue_b64(), v1.data.data()),
58 svld1_f64(svptrue_b64(), v2.data.data())) }
59
60 INLINE const SIMD operator/(const SIMD& v1, const SIMD& v2)

noexcept
61 { return svdiv_f64_x(svptrue_b64(),
62 svld1_f64(svptrue_b64(), v1.data.data()),
63 svld1_f64(svptrue_b64(), v2.data.data())); }
64
65 // other non−member operators

Listing 2.5: workaround with std::array
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Table 2: List of tested elements with their number of nodes, Gauss Points (GPs), and abbreviations
nodes GPs abbrev.

polynomial degree. 1 2 1 2 1 2

triangle 3 6 6 6 tr3 tr6
square 4 8 4 9 sq4 sq8

tetra 4 10 4 15 te4 te10
pyramid 5 13 8 14 py5 py13
prism 6 15 9 9 pr6 pr15
hexa 8 20 8 8 he8 he20

Performance

This section summarises the performance of a new assembler. Measurements were performed on
the Irene cluster on the A64FX partition with fujitsu/1.3.0, openmpi/4.0.5.2 modules. The baseline is
the auto-vectorized kernel. However, according to performance counters, the auto-vectorized kernels
do not include any vectorized instructions, i.e., the compiler could not use any vectorized instruction.
Hence, a substantial performance improvement is achieved with cross-element vectorization.

Performance comparison of kernels auto-vectorized by the compiler and with cross-element vec-
torization is shown in Figures 28, 29, and 30. The kernels for auto (compiler) and cross-element
vectorization were the same, except that double variables in the auto-vectorized kernel were sub-
stituted by the SIMD class. The kernels were tested with twelve types of elements listed in Table 2
and with six different settings: 0 – isotropic conductivity, 1 – symmetric conductivity, 2 –anisotropic
conductivity, 3 – cartesian coordinate system, 4 – cylindric cartesian system, and 5 – advection.
These settings influence the kernel complexity. Settings 0, 1, and 2 impact the pattern of assembler
matrices; settings 4, 5, and 6 add more operations to the kernel that must be called.

As shown in the figures, cross-element vectorization significantly improves the performance of the
kernels, except kernel 4. This kernel contains an evaluation of trigonometric operations, which have
high latency and low throughput in the core and are hard to vectorize. In other kernels, cross-element
vectorisation speeds up from 2.41 to 5.88. The average speed-up is 4.27.

2.5.2 Optimizations of FETI Solver

In ESPRESO, the solution of the assembled linear system is performed by the in-house FETI solver.
The input for the solver is a set of domain matrices 𝐾 with glueing matrices 𝐵. As was described in
more detail in Deliverable 3.1, the FETI solver processing can be divided into two stages: (i) the pre-
processing and (ii) the solution of the system. During pre-processing, the most time-consuming tasks
include assembling the distributed inverse matrix of the coarse problem (𝐺𝐺𝑇 )−1 and factorising the
subdomain stiffness matrices 𝐾. During the solution phase, forward and backward substitution of the
sparse direct solver using the Cholesky decomposition of the matrices 𝐾 is the most time-consuming
part.
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Figure 28: Assembling time of 2D kernels
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Figure 29: Assembling time of 3D kernels with linear elements

Depending on user settings, the pre-processing phase can be avoided. For example, when solving
time-dependent simulations, it is possible to call pre-processing at the beginning of the computation
only. Then, most of the run time is spent in the solution phase.

In general, the solution phase is memory-bound. According to the measurement in [10], HBM
positively impacts performance itself. The solution for domains that do not fit into caches was faster
on Irene with A64FX and HBM than Karolina with AMD EPYC 7H12 and DDR memory. In this section,
we investigate another improvement that can be achieved when a solution needs a lot of iterations.
The approach for speed-up is similar to the acceleration of FETI for GPU accelerators [29]. It is based
on explicitly evaluating the FETI dual operator 𝐹 .

Explicit Evaluation of FETI Dual Operator

The dual operator 𝐹 is a product of several matrices: 𝐹 = 𝐵𝐾+𝐵𝑇 , where 𝐵 is a very sparse
matrix with usually two non-zero values per row representing the glueing of boundary nodes between
domains. 𝐾 is a sparse stiffness matrix of the spatial domain, and 𝐾+ denotes the pseudo-inverse
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Figure 30: ESPRESO FEM : 3D quadratic element kernel assembly time

of 𝐾 (please see [10] or [30] for more details). The matrix 𝐹 is dense with its dimension given by the
size of a domain surface rather than its volume. The operator must be applied to a vector in each
iteration in the solution phase.

In the standard approach, this application (multiplication) is implemented implicitly, i.e., matrix by
matrix, in the following way: 𝐹𝑥 = (𝐵(𝐾+(𝐵𝑇𝑥))). The implicit evaluation includes two sparse
matrix-vector multiplications (SpMV) with glueing matrix 𝐵 and one forward and backward substitution
of the sparse direct solver. Implicit application of the operator takes 95 % of the time of the solution
phase. These three sparse matrix operations can be substituted by a single dense general matrix-
vector multiplication (GEMV) with the explicitly evaluated 𝐹 . The measurement section shows that it
can substantially speed up the system’s solution. On the other hand, an explicit representation of
the 𝐹 operator must be computed during the pre-processing phase. It prolongs the pre-processing
phase. Hence, the effect of the substitution is dependent on a particular example. Examples with a
relatively small number of iterations of the FETI solver are better to solve implicitly. Examples with
many iterations, such as time-dependent simulations, are better to solve explicitly. The particular
threshold depends on the quality of the third-party sparse solver available in the system.

In the original implementation of the library, the explicit evaluation was calculated using a special
routine provided by Intel MKL. This routine implements an algorithm optimised especially for explicitly
evaluating the 𝐹 operator. Since Intel MKL is not available on Irene, the explicit evaluation was
implemented by the following algorithm:

1. convert sparse matrix 𝐵𝑇 to dense matrix,

2. use SuiteSparse to compute a solution of 𝐾+ with dense 𝐵𝑇 as right-hand side matrix,

3. multiply the solution with 𝐵,

4. store the solution to 𝐹 .

Compared to the routine in Intel MKL, this algorithm cannot utilise the sparsity of matrix 𝐵𝑇 . Hence,
its evaluation is proportionally more time-consuming than is reported in [29]. This non-optimality
increases the number of iterations the solver must do to make the explicit evaluation faster than
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the implicit version. A particular threshold, when switching to explicit evaluation, is shown in the
measurement section.

Measurements

In this section, we compare the performance of the FETI solver with implicit and explicit 𝐹 operators
on examples from Deliverable 3.1. Equally to the previous measurement, the ESPRESO FEM library
was built with modules fujitsu/1.3.0, openmpi/4.0.5.2, and suitesparse/5.8.1. The measurements
are shown in Tables 3 and 4. In tables, explicit evaluation is the time spent by computation of the
explicit 𝐹 operator. Apply times denote applying the 𝐹 operator in the solution phase. Single iteration
improvement denotes the absolute difference between implicit and explicit application of 𝐹 (the single
iteration is faster by this time). Speed up denotes how much faster the explicit 𝐹 operator is. In the
time-dependent simulation without recalculating 𝐹 , the speed-up of the FETI solver converges to
this value. Iterations to improvement denote the number of iterations in the FETI solver for which the
solution is computed at the same time, no matter whether implicit and explicit 𝐹 is used.

Table 3: Comparison of implicit and explicit dual operator 𝐹 for 2D examples

domains 2304 1152 576 288 144 72 36
K+ rows 961 1891 3721 7381 14641 29161 58081

numerical factorisation [s] 0.3729 0.4764 0.4472 0.4791 0.5279 0.6026 0.6651
explicit evaluation [s] 1.3020 2.0383 4.8983 8.1323 12.444 23.301 34.276
implicit apply [s] 0.0312 0.0282 0.0657 0.0651 0.0653 0.0659 0.0665
explicit apply [s] 0.0062 0.0053 0.0038 0.0034 0.0024 0.0021 0.0016
single iteration improvement [s] 0.0250 0.0229 0.0618 0.0618 0.0629 0.0639 0.0649
single iteration speed up 5.04 5.37 17.25 19.32 27.67 32.10 41.70
iterations to improvement 52 89 79 132 198 365 528

Table 4: Comparison of implicit and explicit dual operator 𝐹 for 3D examples

domains 512 256 128 64
K+ rows 729 1377 2601 4913

numerical factorisation [s] 0.1521 0.1762 0.2563 0.4403
explicit evaluation [s] 3.7615 5.9064 10.608 20.512
implicit apply [s] 0.0173 0.0158 0.0153 0.0168
explicit apply [s] 0.0100 0.0089 0.0081 0.0074
single iteration improvement [s] 0.0073 0.0069 0.0072 0.0094
single iteration speed up 1.73 1.78 1.89 2.28
iterations to improvement 514 851 1469 2175

As seen in the tables, the time for explicit evaluation significantly increases with the size of 𝐾,
especially for 3D examples. It is caused by the fact that SuiteSparse cannot utilise the sparsity of
matrix 𝐵. To prove this, we compare the SuiteSparse library with PARDISO from Intel MKL on the
Karolina cluster, where both libraries are available. Table 5 shows the ratio between factorisation and
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explicit evaluation of the 𝐹 operator, i.e., relative slow-down of the pre-processing phase. This ratio
represents the difference between algorithms implemented in these libraries since the factorization
is computed in both libraries at similar times. Even though it is better to use the algorithm used in
SuiteSparse for the small matrices, for large matrices, Intel MKL is significantly faster than SuiteSparse
(the ratio is lower). We expect that the performance will be similar if we have a library with a similar
algorithm. On the other hand, if time-dependent simulations are solved, the pre-processing is
performed only once. Hence, it does not influence overall speed up significantly since applying 𝐹 in
the solution phase dominates the run-time.

Table 5: Comparison of Intel MKL and SuiteSparse on Karolina

K+ rows (2D) 25 81 289 1089 4225 16641 66049
Intel MKL 2.60 3.91 1.66 1.34 1.39 1.11 1.39
SuiteSparse 0.07 0.28 0.48 0.81 1.64 2.92 10.20

K+ rows (3D) 125 343 1331 4913 17576
Intel MKL 2.50 1.59 2.31 4.39 11.55
SuiteSparse 0.76 1.32 2.03 12.05 66.77

2.5.3 Conclusion

The optimisations of the ESPRESO FEM libraries include optimisation of the assembler of matrices
for the SVE instruction set since auto-vectorization of this part failed, and explicit evaluation of the 𝐹
operator in the FETI solver to improve its overall performance.

The optimisation of the assembler is based on cross-element vectorization that allows calling kernels
on several elements at once. It allows straightforward mapping of expressions in the code to vector
units in the processor. Even though SVE introduces the concept of sizeless functions, we have
shown that it is possible to use this concept seamlessly for structures with fixed data lengths. The
cross-element vectorization speeds up the assembler four times on average.

In the FETI, explicit evaluation of 𝐹 substitutes several operations with sparse matrices by a single
operation with a dense matrix. It positively impacts the speeds of the solution phase of the FETI
solver. On the other hand, it prolongs pre-processing time. Hence, the effect of the substitution is
dependent on a particular example. Examples with a relatively small number of iterations of the FETI
solver are better to solve with the original implementation. Examples with many iterations, such as
time-dependent simulations, are better to solve with a new implementation. A particular threshold
depends on the quality of the third-party sparse solver available in the system. Unfortunately, the
SuiteSparse solver does not contain a special routine to compute substitution as efficiently as the
sparse solver in Intel MKL. The availability of this solver on A64FX would improve the performance
even more.

During the restructuring of the code, we also observed significant differences between BLAS libraries
provided by Fujitsu and other BLAS libraries. The Fujitsu version was up to eighteen times faster.
Hence, it must be used to achieve good performance.
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2.6 LiGen

One of the main features of the software LiGen is the molecular docking, an operation as common, in
the field of molecular dynamics, as it is computationally intense. It does so by creating a number of
rotated copies of the input ligand (called poses) and performing the docking of each one against the
target protein. Each one of this docking attempts is then evaluated and assigned a score, which in
the end is used to select the best pose. This approach allows a high degree of parallelization and
scalability since all the different poses are independent and therefore can be evaluated in parallel.
In this work, we focused on the optimization of the serial portion of LiGen in order to better exploit
the hardware features which the ARM platform provides, in particular the Scalable Vector Extension
(SVE) and its 512-bit implementation available on Fujitsu’s A64FX processor.

Nowadays the HPC field is not all about performance anymore, it also requires a certain degree
of performance portability due to the high number of combinations of CPU architectures, ISA
implementations, compilers which may arise. For this reason, we wanted to avoid having to trust
the compiler for performance and we decided to use the Highway1 library which provides a unified
interface for platform specific SIMD intrinsics.

2.6.1 Optimizations

The main optimization we applied is manual vectorization of specific micro-kernels identified through
an extensive usage of flamegraphs2: a particular type of chart which shows the percentage of
CPU time used by each function call during code execution. With this approach, we identified 3
micro-kernels (highlighted and marked in Figure 31):

1. rotate: a function which applies rigid 3D rotations with discrete steps to the whole molecular
structure, accounting for 5.65% of total execution time;

2. fragment_is_bumping: a function which checks whether two fragments (portions of a ligand)
overlap, accounting for 49.38% of total execution time;

3. sum_over_grid: a scoring function which computes a discrete estimate of the geometric
distance between the input ligand and the protein pocket, not visible in Figure 31 because of
inlining but accounting for approximately 15% of total execution time.

According to aforementioned measurements, we deemed it useful to tackle the top three hotspots
accounting for 71% of the whole docking runtime. Since the second micro-kernel is responsible for
nearly half of the total execution time, we will analyze it in detail while the others will be analyzed
indirectly through performance evaluation and scaling plots.

1https://github.com/google/highway
2https://github.com/brendangregg/FlameGraph
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Flame Graph: LiGen-dock CPU
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Figure 31: Identification of application hotspots via execution time flamegraph. Functions considered
in this work are marked in purple.

2.6.2 fragment_is_bumping

As introduced in the previous section, the micro-
kernel fragment_is_bumping is crucial during
LiGen’s high performance docking workflow since
its output is used as an early exit condition to de-
termine whether a given ligand’s fragment over-
laps with other parts of the same ligand. If this
happens, the ligand is discarded since it may
never lead to a successful docking scenario.
In algorithm 1, the pseudo-code for this micro-
kernel is shown. The input data of this function is
divided into three components:

• coords: the array of three-dimensional coordi-
nates of the atoms in the ligand;

• mask: an array of bytes used as a mask to
select the atoms in the ligand’s fragment;

• length: the length of the input arrays de-
scribed above.

Input: coords, mask, length
for i = 0; i < length; i = i + 1 do

for j = i + 1; j < length; j = j + 1 do
if mask[i] AND mask[j] then

d = distance(coords[i], coords[j]);
if d < limitDistance then

return True;
end

end
end

end
return False;

Algorithm 1: Pseudocode of the original
fragment_is_bumping micro-kernel

It is assumed that length is positive and both coords and mask have at least length elements.
This function looks for a single unordered pair of different and marked atoms, whose euclidean
distance is less than a constant specified limit (limitDistance in the pseudo-code) and returns true if
it succeeds.

The vectorization strategy applied is straightforward: we fix the data of the outer loop by broadcasting
it to all available lanes. Then, we vectorize the inner loop by using a predicate vector, which Highway
calls mask vector, to select the lanes for which the condition holds true as shown in lines 2-5 (listing
2.6). You may notice that we did not divide the inner loop in two parts, main and remainder, as it’s
usually done when vectorizing loops; we instead used directly a predicate vector in each iteration
since we noticed no performance loss due to all SVE load instructions being implemented as masked
operations. This can be seen directly in the generated ASM: in the auto-vectorized version of the
code (listing 2.7) we have a total of six ldr instructions to load the coordinates of atoms i and j and
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one ldrb instruction to load the mask; in the SVE-vectorized version (listing 2.8) there are only three
ld1d predicated load instructions on SVE registers and one ld1b predicated load instruction for the
mask. Moreover, a critical difference in the generated auto-vectorized ARM assembly code is the lack
of vectorized instructions: only double precision floating point registers are touched (the dXX ones)
while the manually vectorized code makes heavy use of SVE registers (the zXX ones).

1 for (; j < length; j += num_lanes) {
2 const maskD iteration_mask = hn::FirstN(d, num_atoms - j);
3 const vecM mask_j = hn::LoadN(mask_vector_tag, mask + j, num_atoms - j);
4 const auto cond = hn::PromoteTo(mask_to_data_tag, hn::And(mask_i, mask_j));
5 const maskD evaluate_fragment = hn::RebindMask(d,

hn::Ne(hn::Zero(mask_to_data_tag), cond));
6

7 const vecD x_j = hn::MaskedLoad(iteration_mask, d, atoms.x + j);
8 const vecD y_j = hn::MaskedLoad(iteration_mask, d, atoms.y + j);
9 const vecD z_j = hn::MaskedLoad(iteration_mask, d, atoms.z + j);

10

11 const vecD diff_x = hn::Sub(x_i, x_j);
12 const vecD diff_y = hn::Sub(y_i, y_j);
13 const vecD diff_z = hn::Sub(z_i, z_j);
14

15 vecD distsq = hn::Mul(diff_z, diff_z);
16 distsq = hn::MulAdd(diff_y, diff_y, distsq);
17 distsq = hn::MulAdd(diff_x, diff_x, distsq);
18

19 const auto inside = hn::Lt(distance_squared, limit_distance2);
20 if (!hn::AllFalse(d, hn::And(iteration_mask, hn::And(evaluate_fragment,

inside)))) {
21 return true;
22 }
23 }

Listing 2.6: Vectorized version of Algorithm 1 using Highway abstraction for SIMD instructions
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1 .outer_loop_body:
2 // ...outer loop control flow...
3 .inner_loop_header:
4 add x4, x4, #8
5 add x2, x2, #1
6 subs x3, x3, #1
7 b.eq .outer_loop_body
8 .inner_loop_body:
9 ldrb w5, [x2]

10 tst w5, w16
11 b.eq .inner_loop_body
12 ldr d1, [x0, x12, lsl #3]
13 ldr d4, [x3, #8]
14 fsub d1, d1, d4
15 ldr d2, [x17]
16 ldr d5, [x3, #1544]
17 fsub d2, d2, d5
18 ldr d3, [x18]
19 ldr d6, [x3, #3080]
20 fsub d3, d3, d6
21 fmul d1, d1, d1
22 fmadd d1, d2, d2, d1
23 fmadd d1, d3, d3, d1
24 fcmp d1, d0
25 b.ge .inner_loop_body
26 mov w14, w13
27 and w0, w14, #0x1
28 ret

Listing 2.7: Auto-vectorized assembly

1 .outer_loop_body:
2 // ...outer loop control flow...
3 .inner_loop_body:
4 add w7, w5, w2
5 mov z7.d, z5.d+
6 add w7, w7, #1
7 whilelo p2.d, wzr, w7
8 cmp x9, x6
9 csel x7, x9, x6, lo

10 cmp x7, #32
11 csel x7, x7, x14, lo
12 whilelo p3.b, wzr, w7
13 add x7, x0, x13, lsl #3
14 ld1d {z16.d},p2/z, [x7, x17, lsl #3]
15 ld1b {z6.b},p3/z, [x10, x13]
16 fsub z16.d, z4.d, z16.d
17 and z7.b, p1/m, z7.b, z6.b
18 uunpklo z6.h, z7.b
19 ld1d {z7.d},p2/z, [x7, x16, lsl #3]
20 fmul z16.d, z16.d, z16.d
21 uunpklo z6.s, z6.h
22 fsub z7.d, z3.d, z7.d
23 uunpklo z6.d, z6.s
24 cmpne p3.d, p1/z, z0.d, z6.d
25 ld1d {z6.d},p2/z, [x7, x15, lsl #3]
26 fmad z7.d, p1/m, z7.d, z16.d
27 fsub z6.d, z2.d, z6.d
28 fmad z6.d, p1/m, z6.d, z7.d
29 fcmgt p4.d, p1/z, z1.d, z6.d
30 and p3.b, p4/z, p4.b, p3.b
31 and p2.b, p3/z, p3.b, p2.b
32 ptest p0, p2.b
33 b.ne .return_true
34 // ...inner loop control flow...
35 b.hi .inner_loop_body
36 b .outer_loop_body

Listing 2.8: Manually vectorized assembly

2.6.3 Datasets

In constructing the experimental dataset, we extracted representative structures from real-world
chemical datasets, known to be of pharmaceutical importance during previous large-scale exper-
iments [31] [32]. Considering both dimensions that are taken into account to define a workload’s
computational complexity, namely number of atoms (including hydrogens) and number of rotamers,
three structure classes have been defined: small, with up to 64 atoms and 1 rotamer; medium, with
up to 96 atoms and 12 rotamers, and large, with up to 160 atoms and 20 rotamers. For each of those
classes, a sample molecule from the testing dataset has been randomly selected and then duplicated
to produce a uniform input batch.
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2.6.4 Results

As we can see in Figures 33, 35, 34 and 36, we observed a steady improvement in FLOPS per
second (with an overall improvement of 272%), vectorization ratio (peaking at approximately 95%),
throughput (107% peak improvement) and execution time (with a peak speedup of 102%). However,
the same can not be said about memory bandwidth, which was basically halved by the vectorization
of the first kernel, rotate, as we can see in Figure 37. Then, this effect appears to be mitigated in
the next optimization iterations resulting, in the end, in an overall improvement of roughly 15% of the
memory bandwidth. These results show us that the auto-vectorized version of LiGen has a really
different behavior, in terms of both instruction and data access patterns, compared to the manually
SVE-vectorized version.

This result is also reflected by the movement
of the application’s point on the roofline plot
in Figure 32: the points move upward (getting
closer to the CPU-bound limit) and to the right
(getting further from the Memory-bound limit).
The roofline shows the improvement of perfor-
mance of the application across all optimiza-
tion iterations. The memory bandwidth value of
33.79 GBytes/s has been obtained on a single
A64FX core with the STREAM3 benchmark (ver-
sion 5.10), compiled with the LLVM C compiler
(clang version 16.0.6) and flags -O3 -DNDEBUG
-DSTREAM_ARRAY_SIZE=100000000, by running it
10 times and taking the maximum value of the
Copy category.
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Figure 32: Roofline plot of A64FX CPU on a
single core

The throughput values have been obtained by running, on a single A64FX core, the benchmarks
included in the likwid4 software (version 5.2.2) with the following parameters:

• Scalar throughput: likwid-bench -t peakflops -w S0:4GB

• 512-bit SVE throughput: likwid-bench -t peakflops_sve512 -w S0:4GB

• 512-bit SVE and FMA throughput: likwid-bench -t peakflops_sve512_fma -w S0:4GB

Each of these benchmarks has been run 10 times and the maximum value of the MFlops/s category
has been used for the chart.

In Figures 38 and 39, we show the overall improvement in execution time and scaling between the
original auto-vectorized and the last manually vectorized versions of LiGen. Each colored band
represents the improvement between the original version (the lower bound) and the last vectorized
version (the upper bound) for each of the three molecules identified in Subsection 2.6.3. The values
used to create these plots have been extracted as the mean value of of 10 independent executions of
the whole application, after varying the number of cores to be used.

3https://www.cs.virginia.edu/stream/FTP/Code/stream.c
4https://github.com/RRZE-HPC/likwid
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Figure 35: Vectorization ratio improvement across
successive optimization iterations

original rotate
fragment_is_bum

ping
sum_over_grid

0

20

40

60

80

100

120

140

160

Ex
ec

ut
io
n 
tim

e 
[s
]

Figure 36: Execution time measurements across
successive optimization iterations
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Figure 37: Memory bandwidth measurements across successive optimization iterations
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version and the last vectorized version

2.6.5 Conclusion

In this work, we have presented the problem of virtual screening and how it’s solved via geometrical
docking-based virtual screening at scale. We have presented the steps taken to port, tune and
optimize its core algorithms for a platform that provides ARM SVE instructions by leveraging a
retargetable, industry-proven SIMD programming paradigm. We then compared the results obtained
by the SVE-optimized algorithms to the former generic version that is currently used in production on
HPC clusters.
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2.7 BIGDFT

BigDFT is a wavelet-based density functional theory (DFT) code with two main operation modes:
an approach that scales cubically with the number of atoms and a second one that is linear scaling
(LS). In the LS approach, the total work, divided among MPI tasks, grows in proportion to the number
of atoms, so large core counts are more naturally accessible to LS-BigDFT than cubic scaling (CS)
approaches. The DFT workflow is based on a double-loop structure, where the orbitals are optimized
for a given electronic density, and then utilized to build a new density operator, until convergence,
see Figure 40. The CS approach still remains interesting as it does not suffer from the additional
constraints imposed by the locality of the orbitals in LS mode, and it enabled the treatment of more
accurate DFT approximation. A notable case is represented by the calculation of the Fock operator
in the so-called exact exchange functionals. According to the Hartree-Fock model, the calculation
of the exact exchange energy 𝐸𝑋 requires a double summation over all the 𝑁 occupied orbitals 𝜓𝑖,
𝑖 = 1, · · · , 𝑁 .

𝐸𝑋 = −1

2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

∫︁ ∫︁
dr dr′

𝜓*𝑖 (r) 𝜓𝑗(r) 𝜓
*
𝑗 (r
′) 𝜓𝑖(r

′)

|r− r′|
. (2.3)

Each orbital contributes to the one-particle density matrix of the DFT problem, which is related to the
eigenproblem of the Kohn-Sham Hamiltonian operator, of which the 𝜓𝑖 are the eigenstates. In the
EXX functionals the Hamiltonian contains the so called Fock operator �̂�𝑋 , whose action onto a KS
orbital reads: [︁

�̂�𝑋𝜓𝑖

]︁
(r) =

∑︁
𝑗

∫︁
dr′

𝜓*𝑗 (r
′)𝜓𝑖(r

′)

|r− r′|
𝜓𝑗(r) (2.4)

The numerical evaluation of this quantity has a computational cost which might constitute a severe
limitation for calculations with highly precise basis sets. Systematic approaches like plane-wave and
wavelet basis set density-functional codes evaluate the exact exchange in a similar way. They form
all the 𝑁(𝑁 + 1)/2 charge densities 𝜌𝑖,𝑗(r) = 𝜓*𝑗 (r) 𝜓𝑖(r) – also named co-densities – and then
solve the Poisson equation (PEq) for each of them. The Poisson equation can be solved in the basis
with 𝑀 log(𝑀) scaling for all boundary conditions, where 𝑀 here indicates the number of points
of the (uniform) grid of the direct space simulation domain. The same scaling can be obtained in
a plane wave program for periodic boundary conditions. Thus, the number of operations behaves
as 𝑁2𝑀 log(𝑀) for sufficiently large 𝑀 and 𝑁 . The underlying convolutions require 𝑀 log(𝑀)
operations, utilizing Fourier techniques, essentially based on zero-padded FFTs [33].

2.7.1 Optimisations

To increase the performance and enable the solution of increasingly large problems, BigDFT has been
GPU enabled since 2009 [34] utilizing NVIDIA’s CUDA language [35]. CUDA has been employed
in the acceleration of the Fock operator calculations (2.4) with the intensive usage of CuFFT [36]
calls in the Interpolating Scaling Function Poisson Solver of the code. In particular, as alluded to
above in Section 2.7 and as was shown in [37], the expensive evaluation of the EXX required in
the cubic-scaling PBE0 approximation can be offloaded to GPUs to decrease the computing time
and, consequently, to achieve computing times which are competitive to the less accurate PBE
approximation. Relying solely on CUDA for the GPU acceleration is no longer sufficient — it only
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Figure 40: Double loop workflow overview

allows to offload to NVIDIA GPUs — considering the recent usage of other companies’ GPGPUs (e.g.
AMD’s Instinct series [38] and Intel’s Max Series [39]) in several of the fastest supercomputers in the
world [40, 41].

There are several cross-platform alternatives to CUDA for the development of heterogeneous
codes [42, 43, 44]. In the present contribution, we focus on porting BigDFT to SYCL [45]. SYCL
is an open standard developed by the Khronos group which was released in 2014 to enable the
development of cross-platform code for heterogeneous processors in C++ and which has been
implemented in several compilers [46, 47, 48, 49]. Our focus lies on Intel’s oneAPI DPC++ compiler
due to two reasons. First, it enables the execution of the code with various backends. Of particular
interest in the present contribution, aside from the performance on Intel GPUs, is the SYCL per-
formance on CPUs to show the viability of removing the default OpenMP-parallelized Fortran code
in favor of the SYCL code. Secondly, CUDA and SYCL are in many ways similar, which permits a
swift migration from CUDA code to SYCL. More specifically, in CUDA, each kernel, i.e., the code
executed on the GPU, is launched over a “grid” of thread “blocks” consisting of so-called “warps”
each of which represents a set of 32 “threads”. SYCL, on the other hand, launches kernels similarly
over a “nd-range” of “work-groups” each comprised of “sub-groups” consisting of either 16 or 32
“work-items”. The difference is that the sub-group size in SYCL is variable whereas it is fixed to 32
work-items in the CUDA case. Moreover, CUDA provides access to grid properties (e.g. blockIdx,
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1 //CUDA
2 __global__ void post_computation_kernel(int nx, int ny, int nz, double *rho, double

*data1, int shift1, double *data2, int shift2, double hfac)→˓

3 {
4 int tj = threadIdx.x;
5 int td = blockDim.x;.
6 int blockData = (nx*ny*nz) / (gridDim.x*gridDim.y);
7 int jj = (blockIdx.y*gridDim.x + blockIdx.x)*blockData;
8

9 for (int k=0; k<blockData/td; k++) {
10 int idx = jj + tj + k*td;
11 data1[idx+shift1] = data1[idx+shift1] + hfac*rho[idx]*data2[idx+shift2];
12 }
13 }
14

15

16 //SYCL
17 void post_computation_kernel(int nx, int ny, int nz, double *rho, double *data1, int

shift1, double *data2, int shift2, double hfac, const sycl::nd_item<3> &item)→˓

18 {
19 int tj = item.get_local_id(2);
20 int td = item.get_local_range(2);
21 int blockData = (nx*ny*nz) / (item.get_group_range(2)*item.get_group_range(1));
22 int jj = (item.get_group(1)*item.get_group_range(2) +

item.get_group(2))*blockData;→˓

23

24 for (int k=0; k<blockData/td; k++) {
25 int idx = jj + tj + k*td;
26 data1[idx+shift1] = data1[idx+shift1] + hfac*rho[idx]*data2[idx+shift2];
27 }
28 }

Figure 41: Example of one of the BigDFT CUDA kernels compared to the SYCL equivalent. The
SYCL code was automatically generated using Intel ® DPC++ Compatibility Tool version
2023.1.0. Note that there is a simpler version of the above SYCL code.

threadIdx, gridDim) implicitly whereas SYCL wraps these parameters in, e.g, an “nd_item” which has
to be passed to kernels explicitly. To illustrate the commonalities and differences between SYCL and
CUDA, Figure 41 shows the same kernel written in CUDA and SYCL. To further simplify the code
migration from CUDA to SYCL, Intel provides the DPC++ compatibility tool (dpct). It performs the
code migration automatically. In fact, the SYCL code shown in Figure 41 was automatically generated
with this tool. The downside of this automatized approach is that an additional dpct interface layer may
be added to the generated code, which may increase code complexity and impact the performance.
The SYCL implementation presented in this contribution is based on the automatically generated
code from the dpct tool5 which was manually cleaned and optimized to achieve the performance
demonstrated in this contribution.

5Intel DPC++ Compatibility Tool version 2023.1.0. Codebase:(89a0192e122343c2a13cec7dc6d57cab899c7b64)
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Figure 42: Computing time of the Fock miniapp for free boundary conditions, a grid size of 𝑛 = 2563

and 𝑜 = 64 orbitals. In the GPU case, one MPI rank was pinned to each stack of a GPU
up to a maximum of 8 MPI ranks per compute node. In the CPU cases 16 MPI ranks per
node were used. Note that the CPU tests on 8 nodes are missing since the number of
MPI ranks cannot exceed the number of orbitals. The first data point was performed on
one stack of the two stacks of the Intel GPU.

We have tested the performance of the new SYCL implementation on the Ponte Vecchio (PVC) Intel
GPU and the CPU to the existing CUDA and CPU (OpenMP) implementations on the basis of the “Fock
miniapp”. The Fock miniapp is a small test program to evaluate the performance of the computation
of the Fock operator (2.4) in a way which is representative for the Fock operator evaluation performed
in the execution of the full BigDFT suite. Extensive tests have been performed on several runtimes in
a PVC-based architecture, which are under non-disclosure and will be presented in a forthcoming
publication. The present section compares the performance of the different implementations on the
basis of the Fock miniapp. The results in this section are highly representative for the performance
of the full suite in many situations, since the Fock operator evaluation constitutes the most time-
consuming computations in the full suite when using the PBE0 approximation. The first workload is
related to a single Fock operator evaluation for a grid size of 256 points in each of the three dimensions
(for a total of 2563 points), 64 orbitals, and free boundary conditions (which results in a grid size for
the Poisson solver of 5123 points). The results of three different code versions, namely, the original
CPU implementation, the SYCL implementation on the CPU and the SYCL implementation on Intel
Max 1550 GPUs, are shown in red, green, and blue, respectively. One can observe that, i) the
SYCL implementation is significantly faster on the CPU than the original CPU implementation by
approximately a factor two, ii) the SYCL implementation on the Intel GPU significantly outperforms the
other implementations, and iii) the scaling of the GPU implementation levels off from 1 to 8 nodes (i.e.
4 to 32 GPUs) due to the increasingly small computing times which fail to hide the communications.
For the GPU runs, 1 MPI rank per GPU stack was used (i.e., 2 MPI ranks per GPU, 8 MPI ranks per
node), whereas 16 MPI ranks per node were used for the CPU runs.
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Figure 43: Computing time of the Fock miniapp for periodic boundary conditions, a grid size of
𝑛 = 963 and 𝑜 = 128 orbitals. In the SYCL GPU case, one MPI rank was pinned to each
stack of a GPU up to a maximum of 8 MPI ranks per compute node. In the CPU cases 16
MPI ranks per node were used. Note that this workload coincides with the exact exchange
computation performed during a full solve of the H2O-32 case presented in Figure ??.
Note that in the CUDA case, two GPUs constitute a node whereas in all other cases it is
four GPUs per node. The first data point was generated on one of the two stacks of the
Intel GPU.

The second workload shows a Fock operator evaluation for a grid size of 96 points in each of the three
dimensions (for a total of 963 points), 128 orbitals, and periodic boundary conditions (which does not
require zero-padding and thus maintains a grid size of 963 points for the Poisson solver). In addition
to the previous three configurations, the graph also shows results achieved on NVIDIA A100 GPUs
with the CUDA implementation. The CUDA results were generated by pinning two MPI ranks to each
A100 GPU to utilize the same number of MPI ranks per GPU as in the SYCL tests. One can observe
that the SYCL implementation on the Intel Max GPU is highly competitive in terms of computing times.
Similarly to the workload shown above, the scaling in the SYCL GPU case degrades significantly for
more than a single node and the computing times even increase from four nodes to eight nodes due
to increasing time required for the communication. The different CPUs in the SYCL-GPU and CUDA
cases have minimal impact on the presented execution times since the majority of the timed code is
executed on the GPUs.

Table 6 compares the average HBM and L3 bandwidths during the single-stack executions on the
Intel GPU of the above described workloads. From the table it is evident that the smaller workload
(𝑛 = 963) fits into L3 cache and thus induces minimal HBM traffic. The larger workload, in contrast,
does not fit in L3 and induces heavy HBM traffic. In the case of the larger workload, the code utilizes
on average 783 GB/s of HBM bandwidth, which represents approximately 48% of the theoretical peak
bandwidth of a single stack. The complex-to-complex FFT with the maximal averaged bandwidth out
of all complex-to-complex FFTs achieved a bandwidth of 938 GB/s.
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Case
Read (GB/s) Write (GB/s) Read+Write

L3 HBM L3 HBM L3 HBM

𝑛 = 2563, 𝑜 = 64 0.02 468 336 315 336 783
𝑛 = 963, 𝑜 = 128 1172 66 1744 48 3516 114

Table 6: Comparison of the average read and write L3- and HBM-bandwidths achieved by the Fock
miniapp on a single stack of the Intel GPU. The smaller case (𝑛 = 963, 𝑜 = 128) fits in L3
cache and therefore hardly utilizes HBM. The larger case (𝑛 = 2563, 𝑜 = 64) does not fit in
L3 and induces heavy HBM traffic.

2.7.2 Conclusion

The future guidelines of BigDFT developer groups will therefore be based on such a blueprint, where
we will inspect the optimal sources of optimisation in view of:

1. Extending the FUTILE library API to include in the same structures CUDA and SYCL calls to
accelerated kernels, thereby enhancing the readability of the host code

2. Measuring the performance figures on the basis of the percentage of the total bandwidth of the
node

3. Providing a fully portable programming paradigm which has the ambition to be executed on the
present-day and emerging technologies, with limited intrusivity for the developer and minimal
guidelines for the user

We plan to use the Just-In-Time programming paradigm (like an underlying OpenCL layer) to explore
the portability of the approach. This can be a useful strategy to, on one hand, abstract the portability
layer of this application to a single programming paradigm, and on the other hand, lower the barrier
of portability to other architectures (ARM, AMD GPU, Grace Hoppper,. . . ).
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2.8 OpenGADGET

OpenGADGET [50] [51] is a Cosmological, N-body Simulation code used to simulate the evolution of
cosmic structures, namely the galaxies and the clusters of galaxies, in the framework of a relativistic
expanding background. While gravitation is the physical process mainly responsible for the growth of
those objects in early times or at large scales, at minor scales the baryonic processes also play an
essential role in shaping the observable properties of the luminous matter.
Hence, two types of physical interactions must be modelled: (i) long-range forces (the gravity) that
act at all distances, and (ii) local processes that act in the neighbourhood of every point.
The gravitational interaction, in turn, is calculated in three different "regimes of distance": the "close
particles" are accounted for via a direct-summation approach, the "distant" particles are treated via
a multi-polar expansion (basically, groups of particles that reside in a distant volume are treated
as a unique equivalent particle). Finally, the contribution of "very distant" particles is calculated via
a Particle-Mesh approach (the particles are distributed over a grid, and the resulting large-scale
density field is used to solve the Poisson’s equation via FFT; the gradient of the obtained gravitational
potential returns the gravitational force from the large-scale distribution of matter).
Gravity and local processes need to retrieve the "neighbour particles" of any target particle, which is
implemented through an Oct-Tree data structure that serves as a backbone for the entire code; the
Oct-Tree provides a fast neighbour search with a search time of the order 𝑂(𝑙𝑜𝑔 𝑁𝑝) and 𝑂(𝑑) in the
best (a reasonably homogeneous particles’ distribution) and worst (a strongly clustered distributions)
cases respectively, where 𝑁𝑝 and 𝑑 are the number of particles and the depth of the tree.
The OpenGADGET code is fully parallelized with a hybrid MPI+OpenMP approach and can scale
reasonably well on very large number of nodes in typical x86-based HPC environments.

OpenGADGET’s main loop is broken down into phases and sub-phases, whose execution times have
been analysed in Deliverable 3.1, as follows:

1. Domain-Decomposition: since particles are moving in space under the effect of the physical
forces acting on them, their spatial distribution continuously changes in the direction of a higher
clustering; as a consequence, the distribution of particles among the MPI ranks needs to be
constantly re-defined and refreshed to keep a good work-balance. The goal is achieved by
defining the computational domains as segments of a space-filling Peano curve used to map to
1D the 3D particles’ distribution.

2. The first kick to velocities: OpenGADGET implements a kick-drift-kick formulation of a simple
leapfrog integrator to advance particle orbits in time, which coupled with a power-of-two
decomposition of the timeline, leads to a symplectic integrator. This phase implements the first
half-kick using the force estimated in the previous timestep.

3. Gravity; the forces due to the gravitational interaction are calculated using the TreePM approach
explained above. In the following analysis we study the entire region (named "Gravity") and,
separately, the calculation performed via the tree (labelled as "GravTree").

4. Density: the density of baryonic particles is estimated in an iterative loop where a suitable
number of neighbours is found for every active particle.

5. Hydrodynamics: the hydrodynamical forces are calculated for all active particles with an SPH
solver that uses the density as a weight function.
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6. Extra-Physics: all the rest of the local physical processes are calculated. A partial list of those
effects includes radiative cooling, star formation, stellar evolution and feedback, non-equilibrium
chemistry, cosmic rays, dust production, magnetic fields, black-holes formation, dynamics and
feedback.

7. Drift and second half-kick: the particles are displaced according to the estimated velocities, and
the velocity is updated based on the new estimated forces (note: since the behaviour of this
section and the first half-kick section are very similar, for the sake of clarity we show only this
last region in the plots that are presented below).

2.8.1 Evaluation and Analysis Using Hardware Counters: Methodology

Since each phase of OpenGADGET behaves differently, it might be misleading - or even simply
impossible - to analyse and try to optimise OpenGADGET as a whole. Instead, for the optimisation of
OpenGADGET for the A64FX platform, we follow a "per phase" performance analysis. There are
two targets in this effort of performance analysis and optimization of OpenGADGET: namely, the
level of vectorisation of the code, and the proper utilization of HBM memory. This activity, in general,
serves as an assessment of the mutual performance of both the codes and the platform. To identify
performance optimisation opportunities, we have instrumented the OpenGADGET code with code
that captures and reports hardware performance counters. To do this we have built from scratch a
performance counter tracer, on top of the Performance Application Programming Interface (PAPI).
For each optimisation target we select a set of performance counters.

Performance Counter Tracer

Analysing the performance of such complex code as GADGET requires tracing that allows temporal
and spatial correlation of each measurement and its cause. Additionally different sets of performance
counters are required for each type of analysis, so the events should be easily set and changed.
Therefore we decided we needed to build a tracer, that will enable us to collect the performance
counter events, in a manner that fulfils the requirements of our analysis. Our tracer, which we will
refer to as pmu tracer, is built on top of Performance Application Programming Interface (PAPI) and
it is built as a separate object file that is linked to GADGET. The main goals in the design of the
pmu tracer are low memory footprint, ease of use and configurability. In order to keep the footprint
of the tracer low, we collect aggregate counts among all threads, per iteration. By aggregating the
counts of all threads, we manage to fit the data for one iteration in a single cache line. Additionally,
pmu tracer operates in a lock-less way, with the exception being the initialization, which happens
once per execution. This way, the instrumentation doesn’t interfere with the control flow and the
synchronisation of the application threads. The main constructs of pmu tracer are:

• event sets

• tracepoints

• tracefiles
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An event set is a collection of events which are supported on the A64FX. A tracepoint is a segment of
the code for which we want to collect performance counter events. a tracepoint is marked by a start
and a stop call as such:

1 main_loop()
2 {
3 /*
4 ...
5 */
6 pmu_tracepoint_start(0);
7 domain_decomposition_intensity_execute();
8 pmu_tracepoint_stop(0);
9 pmu_tracepoint_start(1);

10 compute_grav_accelerations();
11 pmu_tracepoint_stop(1);
12 /*
13 ...
14 */
15 }

Listing 2.9: example of instrumented code

The aggregate counts for each event, in the event set per iteration for each tracepoint, is written in the
corresponding tracefile in raw, binary format. To evaluate the overhead of the tracer we run the same
configuration of GADGET several times with and without tracing, using 5 tracepoints. We found that,
overall, the overhead of the pmu tracer is roughly 10%. Finally, we have created a post-processor
utility that translates the binary trace files into csv files.

2.8.2 Evaluation and Analysis using hardware counters: experimental findings

Roofline Analysis

In order to characterise each phase of the execution of OpenGadget, we use a roofline model
[52] analysis. To do this, we combine the output of the Empirical Roofline Tool (ERT) [53] with the
Hardware counter output we get from the instrumented OpenGADGET code.

As first, we created two ERT configurations: the first ERT configuration creates a single process and
populates all the cores of the CPU with 48 OpenMP threads. This configuration uses the interleave
policy of numactl in order to allow the threads to utilise all the memory channels. The second ERT
configuration creates 4 MPI ranks spawning 12 OpenMP threads. The MPI rank and its spawned
threads are pinned on one of the 4 NUMA nodes of the CPU, and they access only their local memory,
which means that their memory accesses do not cross NUMA boundaries. The results of the two
configurations can be seen in Figure 44. The configuration with the four MPI ranks corresponds
to Figure 44a while the ERT output for the configuration that uses a single MPI rank is shown in
Figure 44b. Although both configurations achieve the same peak performance, we observe that the
configuration with the four ranks achieves peak performance for a much lower (roughly half) arithmetic
intensity. This is because in the four-rank configuration, each MPI rank only accesses memory that
belongs to the NUMA node it is pinned on, hence achieving higher throughput.
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When running GADGET, we set the affinity of threads and the memory policy similarly to the four-rank
ERT configuration; This ERT configuration creates ideal, but unrealistic memory access patterns
(no cross NUMA accesses etc); yet such memory access patterns are far from the ones GADGET
creates. Therefore, we use the one rank ERT configuration as basis for our analysis.
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(a) Four MPI ranks

(b) One MPI rank

Figure 44: Empirical Roofline Tool output for A64FX for two access patterns
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execution phase Stall Ratio Memory-exclusive Stall Ratio

hydro 0.545 0.292

density 0.515 0.325

gravacc 0.542 0.286

Table 7: Stall ratios

In this roofline part of our analysis, we focus on three phases of GADGET, namely hydro, density and
gravacc. In this analysis we try to give both the empirical results as measured, as well as a composite
metric that takes into account structural constraints of the machine. For the FLOPs/sec and the
Arithmetic Intensity, we use the performance counters along with the elapsed max time (per iteration)
as shown in Table 8. In addition we use the stall cycles to create a projection of the performance had
the system not been stalled due to reasons other than memory. In Table 7 we report the stall ratios
for the 3 phases we examine in this section.

With 𝐹𝐿𝑂𝑃𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 being the FLOPs estimated using the performance counters as described in
Table 8, we can now state

𝐹𝐿𝑂𝑃𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝐹𝐿𝑂𝑃𝑠𝑖𝑑𝑒𝑎𝑙 * (1− 𝑆𝑡𝑎𝑙𝑙𝑅𝑎𝑡𝑖𝑜)

from which we can derive

𝐹𝐿𝑂𝑃𝑠𝑖𝑑𝑒𝑎𝑙 = 𝐹𝐿𝑂𝑃𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 * (1− 𝑆𝑡𝑎𝑙𝑙𝑅𝑎𝑡𝑖𝑜)−1

The measured FLOPs as well as the projected FLOPs are shown in combination with the roofline
curve in Figure 45.
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Figure 45: Plot of OpenGADGET ’s phases on the A64FX roofline. Purple dots refer to the measured
performance, while green dots are the rescaling of the purple ones by the inverse of the
fraction of stalled cycles (see text for details). In other words, the green points represent
the potential improvement after removing some general code inefficiencies.

Per-phase Code Analysis: Methodology

To assess the performance of the code on the target platform, we addressed all the phases listed
above in the introduction to the code’s structure. Since the behaviour of the two half-kick phases
is similar, we show only one of them in the following. Also, in addition to profiling the whole gravity
section, which includes the PM- and the tree-based calculations, we separately profile the pure
tree-based phase.

For each code region, we have run the profiler with several different sets of events, aiming to extract
various metrics. In Table 8, we illustrate how we have defined the adopted metrics: on the first column,
we report the label with which we reference the metrics both in the following text and the figures.
On the central column, we define the metric in terms of architectural events defined in the manuals
mentioned above. Finally, we illustrate the precise meaning of the metrics and the rationale behind
the adoption.
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We stress that there is not a straightforward definition of the "FP vectorization ratio" as one would
expect it, i.e. as FP_VECTOR_OPS / ALL_FP_OPS. That stems from 2 combined facts, namely:

1. the SVE operations have no fixed multiplicity, at odds with SIMD operations. In other terms,
the SVE registers can be used by chunks of 128 bits; as such, every SVE instruction may be
equivalent to a different number of scalar instructions.

2. while the FP ops are counted separately for SVE instructions (with the correct amount of
equivalent single ops, i.e. by multiplying each instruction per 128 / type_size), the SIMD ops
are counted together with the pure scalar ops.

As a consequence, we have defined 2 metrics that we use to estimate upper- and lower- bound for
the vectorization ratio, namely the VECTORIZAITON RATIO and SVE+SIMD FRACTION, and an additional
metric, the VECTORIZATION DEGREE, that we use as a general indicator of the prevalence of vector
FP operations.

In addition, as explained in paragraph 2.8.2, we predict how well the code will perform in various
regions using the platform’s roofline model. Coupling this evaluation with the analysis of the number
of stalled cycles, we can estimate the potential impact of different actions and determine whether
they are feasible and/or advisable within the current code’s framework.

Per-phase Code Analysis: Main Results

As we detail in the next sections, for the most suited kernels the auto-vectorization achieved by
the FUJITSU compiler is surprisingly good, with an estimated vectorization fraction as high as 70%.
In more complex kernels the vectorization is capped by several factors that can just be optimized
specifically for A64FX but require a number of more general activities in the code.

Our main findings are as follows:

1. The performance porting of the OpenGadget code is reasonably successful (see the following
discussion for a quantitative definition) on the target platform once:

• the appropriate compiler (we used the fujitsu software stack) and flags are adopted.
Specifically, we use -O3 -fopenmp -KA64FX -KSVE -KARMV8_3_A -Kfast throughout
this work; see section 2.8.2 for a comparison with the gnu compiler;

• the appropriate run set-up for threads placement and memory binding is specified. In
this work, we limit the run to the usage of a single node; as such, given the fact that the
A64FX architecture exposes 4 NUMA nodes per socket, we opted for running 1 MPI task per
NUMA node while filling all the node cores with OpenMP threads. The rationale behind the
choice is to fully exploit the computational power offered by the socket and, at the same
time, to minimize the inefficient memory accesses. The OpenMP set-up is:

export OMP_PLACES=sockets
export OMP_BIND=close
export OMP_NUM_THREADS=12.
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Label Definition Meaning

SVE+SIMD ins.
fraction

SVE_INST_RETIRED+SIMD_INST_RETIRED
INST_RET The fraction of all retired SVE+SIMD instruc-

tions respect to all retired instructions. This
metric’s rationale is that when a code is vec-
torized, not only the pure FP instructions are
vector ones but also loads, stores, moves, etc.
As such, we consider this ratio a general indi-
cator of issuing vector instructions in a given
code region.

IPC CPU_CYCLES
INST_RETIRED That is the usual definition of cycles-per-

instructions, which is a broad estimate for the
code’s efficiency

SVE Vectoriza-
tion ratio

FP_SCALE_OPS×4
FP_SCALE_OPS×4+FP_FIXED_OPS The SVE+SIMD instructions are accounted by

their true multiplicity, which however is not
fixed in the SVE instructions because the SVE

registers can be used by "modules" of 128bits.
This metric assumes an average utilization of
half the registers (4 doubles) to get an upper-
bound estimate of the prevalence of pure SVE

ops. We stress that this metric does not ac-
count for the SIMD ops that are counted in the
FP_FIXED_OPS event along with the scalar FP

ops.

Vectorization
degree

FP_SCALE_OPS×4+FP_FIXED_OPS_SPEC
FP_SPEC This metric amounts to estimate how many

"vector" FP ops are performed per FP op is-
sued. This number is expected to be 16 in
the extreme case in which all the FP ops are
SVE FMA with 8 doubles, 8 when all the FP

ops are SVE, and 1 when all the FP ops are
scalar. While assuming full utilization of reg-
isters would be more optimistic, we opted for
assuming an average of half-register with FMA

(from which it descends the factor 8).

Table 8: The definition of adopted metrics as functions of architectural events on ARM64FX
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Label Definition Meaning

L[1|2] miss rate L1D_CACHE_REFILL
EFFECTIVE_INST_SPEC Following the definition from the manuals, this

returns the fraction of instructions that lead to
a refill of L[1|2] data cache.

L[1|2] misses L1_MISS_WAIT
CPUCYCLES this returns the average number of L[1|2] data

cache refill per cycle.

L[1|2] miss wait L1D_CACHE_REFILL
L1_MISS_WAIT this returns the average cost in cycles of data

cache refill.

L[1|2] TLB miss
rate

L1D_TLB_REFILL
EFFECTIVE_INST_SPEC this returns the fraction of instructions that

lead to a refill of L[1|2] TLB cache.

FP, loads,
stores, branch
fraction

X
EFFECTIVE_INST_SPEC X = [FP_SPEC | LD_SPEC | ST_SPEC |

BR_PRED]

Table 9: The definition of adopted metrics as functions of architectural events on ARM64FX [continues
from the previous table]

Label Definition Meaning

Measured
FLOPs

FP_SCALE_OPS × 4 +
FP_FIXED_OPS

Measured (double) Floating point operations.

Stalled cycles STALL_FRONTEND+ STALL_BACKENDEvery cycle that no operation was issued for
any reason.

Stall ratio STALL_FRONTEND+STALL_BACKEND
CPU_CYCLES the ratio of stalled cycles to the total number

of cycles

Front-end
stalled cycles

STALL_FRONTEND Every cycle that no operation was issued be-
cause there are no operations available to
issue from the frontend.

Front-end stall
ratio

STALL_FRONTEND
CPU_CYCLES the ratio of stalled cycles, due to front-end, to

the total number of cycles

Back-end
stalled cycles

STALL_BACKEND Every cycle that no operation was issued be-
cause the backend is unable to accept any
operations.

Back-end stall
ratio

STALL_BACKEND
CPU_CYCLES the ratio of stalled cycles, due to back-end, to

the total number of cycles

Memory stalled
cycles

LD_COMP_WAIT Every cycle that no operation was committed
because because the oldest and uncommitted
load/store/prefetch operation waits for L1D
cache, L2 cache and memory access.

Table 10: The definition of adopted metrics as functions of architectural events on ARM64FX [continues
from the previous table]
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The mpirun set up is:
ccc_mprun -e "–bind-to-numa –map-by numa -np ${SLURM_NTASKS}" \
numactl –localalloc

with the addition of the flags -E"–exact –exclusive –enable_perf" to access the
papi framework and the pmu.

2. Inspecting the profiling data as defined above in Tables 8-10, we can conclude that the code has
some overall inefficiencies that are not "local" but ascribable to the memory layout, especially,
we speculate, to the large size (typically of the orders of hundred of bytes) of data structures
that retain the particles’ variables (namely the mass, the position, the velocity, the accelerations,
to name some, and other physical quantities peculiar to different particles types).
For instance, in Table 7, we report the measured average number of stalled cycles in different
code regions; noteworthy, that figure is stable all across the run and among the various regions
(that exploit different data structures).
The analysis conveys that about half of the cycles are stalled in all those regions (similar results
hold for all the regions), and the ∼ 40% of the stalls are due to memory starvation. Indeed, from
the estimate of the arithmetic intensity, we know that the code resides in the ramp area of the
roofline, which, by definition, is where the platform under analysis is memory-bound. However,
our code’s placement well below the ramp line suggests that the inefficiencies revealed by the
analysis further limit the performance, leaving a significant potential for improvement. Projecting
a × 2 factor on the roofline (green point in Figure 45) shows that this would bring the code’s
performance in line with the saturation in the memory-bound area.

Discussion of The Results Obtained With The FUJITSU Compiler

This section briefly reviews and describes the details of our tuning and analysis; the following plots
report measurements collected via our PAPI-based framework to collect performance counters during
the code execution. All the plots report the data from the regions defined at the beginning of this
section 2.8, colour-coded as indicated in the legends.
We have run a small cosmological box of 15𝑀𝑝𝑐/ℎ size and 323 particles from early times (𝑡 = 0)
down to the present (𝑡 = 1). Our choice was due to the fact that such a small case could easily fit
in a single node and run in a short time, allowing us to perform multiple tests and collect the data
along the entire simulation. In the plots, the solid lines represent the measured values averaged over
bunches of 10 successive measures. At the same time, the shaded areas encompass the region
within ⟨𝑣⟩ ± 𝜎 where 𝜎 is their standard deviation.

Vectorization Figure 46 shows our results for collecting pmu-based metrics on issuing vector
instructions within various code regions. The regions have been described in the introduction to
this chapter. In the "vector" set, we include both the sve and the simd sets. To trace the related
instructions and operations, we rely on the counters described in Table 11.

In the left panel of the upper row, we show the estimate of the upper limit for the SVE vectorization
fraction, which, with somehow large oscillations, lies at 70% for most regions, while reaching ∼ 80%
and even ∼ 100% for the ExtraPhysics and the Density regions. This estimate, which does not include
the SIMD flop, assumes that the SVE registers are always used at full size and with no FMA.
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event Definition comment

fp_scale_ops_spec "This event counts architecturally
executed SVE arithmetic opera-
tions; This event counter is incre-
mented by (128/CSIZE) and by
twice that amount for operations
that would also be counted by
sve_fp_fma_spec"

We interpret this counter to be incre-
mented by 2 in case we use double
precision types (as it is actually stated
in the description of the dedicated
fp_dp_scale_ops_spec, and by 4 if the
operation consists in a fma. The sve
ins can be executed with a variable num-
ber of elements in the registers, which
are 512bits wide. Since we have set the
code to use only double precision,
the maximum possible multiplicity is 8.
Taking into account the 2 factor already
accounted for, we then multiply this
counter by a factor of 4 to have a con-
servative upper-limit of the prevalence
of pure sve operations (neglecting the
presence of fma ops).

fp_fixed_ops_spec "This event counts architecturally
executed v8SIMD&FP arithmetic
operations; This event counter is
incremented by the specified num-
ber of elements for Advanced SIMD
operations or by 1 for scalar opera-
tions, and by twice those amounts
for operations that would also be
counted by sve_fp_fma_spec".

This counter is incremented by the true
number of fp ops in simd and normal
registers.

simd_inst_ret
sve_inst_ret

"This event counts architecturally
executed [simd|sve] instruc-
tions".

This counters returns all the
[simd|sve] instructions, which in-
cludes not only purely floating-point but
also loads, stores, byte reshuffling etc.

inst_retired "This event counts every architec-
turally executed instruction."

–

cpu_cycles "This event counts every cycle." –

Table 11: The architectural events on ARM64FX relevant to determine the vectorization
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Compiler Options

fujitsu -O3 -fopenmp -KA64FX -KSVE -KARMV8_3_A -Kfast

gnu -Ofast -O3 -fopenmp -march=armv8.3-a+sve+simd
-msve-vector-bits=512 –param
aarch64-autovec-preference=4 –param
aarch64-vect-unroll-limit=8 -fno-stack-protector
-ftree-vectorize -fomit-frame-pointer

Table 12: The options used to tune the compilation.

The right panel of the same row shows the metrics that we call "vectorization degree", defined as the
number of flops executed per flop instruction. If all the flops were pure SVE(SIMD), that figure would
range from 8(4) to 16(8) for double precision operands; hence, how this metrics is larger than 1 is
related to how many flop operations are conducted via vector registers.
We note that the relative behaviour of the different regions is the same for the two metrics, as expected.
The fact that the DomainDecomposition region has lower values for the first metrics may be due to
the fact that the compiler has given preference to SIMD instructions there. The left panel of the bottom
row shows a lower limit for the vectorization fraction, defined as the ratio between the summation of
all the SVE and SIMD instructions and all the instructions. The rationale behind this choice is that a
successful flop vectorization does not come without ancillary operations like loads, stores, memory
operations and others. We then consider this metric as a lower limit for the flop vectorization.
Finally, the bottom right panel displays the Instructions-per-Cycle metric; values below 2 are usually
not considered optimal ones; in the presence of a significant amount of vectorization, they may be
seen as a sufficient achievement (see Sec. 2.8.2 below). However, the medium value obtained is
reflected by the poor placement in the roofline chart (see discussion in section 2.8.2 and Table 7).
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Figure 46: Estimates of the vectorization ratio in different code regions as a function of the run time
(x-axis). Top row. In the left panel, we show the upper limit for how many SVE flop ops
are issued in units of the total number of flop ops; in other words, we show the fraction
of flop operations that could be interpreted as SVE. In the right panel, we report the
"vectorization degree" defined as how many flop ops are performed per flop instruction
(note that this figure would be 16 for full utilization of SVE registers with doubles and FMA
and equal to 8 without FMA). Bottom row. Left panel: the bottom limit of SVE+SIMD flop
ops fraction; right panel: the average Instructions-per-Cycle. See the text for more details
and a discussion.
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Figure 47: Metrics for the usage of L1 (top 4 panels) and L2 (bottom 4 panels) caches. Top row of
each figure. Left panel : the fraction of events that led to a L[1:2]-Data refill. Right panel :
the actual number of miss in terms of avg cache refill per cycle. Bottom row of each
figure. Left panel : how many cycles were wasted in average per cache refill. Right panel :
the fraction of events that led to a L[1:2]TLB miss.
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Figure 48: Top figure Metrics for IPC effectiveness: the fraction of cycles in which 1,2, 3 and 4
instructions were retired (from top left to bottom right). Bottom figure Metrics for some
inefficiencies.
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Figure 47 condenses our findings about the L1 (upper sub-figure) and L2 (bottom sub-figure) caches.
Top rows, left and right panels, contain the average fraction of events that led to cache refill miss
rates and the number of cache refills per cycle, respectively. The bottom rows report the average cost
of a refill (in cycles) and the average fraction of events that led to a TLB refill (left and right panels,
respectively). The L2 cache exhibits good behaviour in all the metrics; although that is partially due to
the very small size of the case under exam, that is a strong point in favour of the A64FX architecture,
the L1 suffers, on average, from many refills per cycle. Given the large size of the L1 in the target
architecture, we interpret that as a consequence of the large size of the data structures that contain
each particle’s data.

Finally, to conclude this analysis, we inspected some broad indicators of the code’s efficiency and
inefficiency: the fraction of cycles in which one, two, three or four instructions are retired and the
fraction of cycles with no instructions issued due to the waiting for a previous event, in the top and
bottom sub-figures of Figure 48 respectively.
It can be appreciated that a significant fraction of cycles, from ∼ 0.2 to ∼ 0.4 appear to be very
efficient, with 4 instructions retired. However, almost the same number of cycles only amount to 1
instruction and a noteworthy fraction falls in the group of stalled cycles (see the discussion about the
stalled cycles analysis).
In fact, about 30% to 40% of cycles is stalled either on a memory wait or on a flop instruction, that is
obviously in accordance with the figures in Table 7.

Comparison Between GNU and FUJITSU Compilers

To bring evidence of the crucial role of the compiler, we have conducted the same set of simulations
compiling the code with a GNU-based software stack. However, in this section we limit the discussion
to the metrics related to vectorization.
Figure. 49 collects the direct comparison between the results obtained with the two compilers: the
FUJITSU and the GNU in the left and right columns of each pair of plots, respectively.
Table 12 reports the precise flags used to tune the compilation in both cases. Panels 49a, 49b and
49c directly contrast (i) the upper-limit estimate for the vectorization ratio, (ii) the vectorization degree
and (iii) the sve+simd instructions fraction. The plots speak for themselves (even: dropping the +sve
specifier in the gnu string would result in no sve at all). As expected, the gnu compiler is much worse
at delivering efficient vectorized code on the A64FX architecture, while the average IPC results look to
be slightly better. However, with a very low vectorization, that is far from sufficient.
In fact, the total run-time of the gnu code is ∼ 30% larger than the one achieved with the fujitsu
compiler: 217 sec instead of 164 sec.

2.8.3 Conclusion

In the sections of this chapter we describe our performance-port of OpenGadget on the A64FX CPU.
We present our methodology for analysing the performance of OpenGadget on the A64FX and we
report our findings. We use the Empirical Roofline curves to present the measured performance
of OpenGadget in context of an ideal kernel (i.e. the tight kernel that the ERT is using) with similar
arithmetic intensities. We also report time-series of several metrics, such as vectorisation fractions,
cache misses, IPC, etc. Our findings show that we have managed to achieve a high degree of
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(a) (b)

(c) (d)

Figure 49: Comparison between results obtained with fujitsu (left columns of each panel) and gnu
compilers. The same colour code for the different regions applies than for plots in the
previous section.
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vectorisation, especially for some phases of OpenGadget and that we are utilising well all the
micro-architectural components of the CPU (memory channels, vector units, cores, etc).

Despite the high degree of vectorisation and the seemingly proper orchestration of the run (task
placement, NUMA-aware allocations etc.), we measure lower performance than what the roofline
model predicts. The results we present indicate that the difference between the measured and the
ideal performance can be attributed to the large number of cycles in which the pipeline is stalled. We
believe the cause for those stalls to be a combination of the irregularity of accesses of OpenGadget,
with some micro-architectural design limitations of the A64FX, such as small TLBs, HBM only
memories, lack of L3 caches etc. Finally, we believe that further optimisations for the A64FX require
large scale structural changes of OpenGadget code which we believe are outside of the scope of this
effort.
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3 Tailoring EUPEX Mini-applications To SVE and
HBM

In this section, we detail the analysis done on the mini-applications in order to make use of the
Scalable Vector Extension (SVE) instruction set and the High Bandwidth Memory (HBM) features
that will be present in the EUPEX prototype.

3.1 Bolt65

Bolt65 is a performance-optimized HEVC (High Efficiency Video Coding) hardware/software suite for
Just-in-Time video processing. It is a "clean-room" suite that consists of an encoder, decoder, and
transcoder based on the HEVC standard [54]. The special focus in the development of the Bolt65
is set on the performance efficiency achieved by low-level optimizations and hardware-software
co-design adapted for the efficient exploitation of different underlying hardware architectures. As
described in previous chapters, the main focus for the application optimization in this phase of the
project is the utilization of SVE vector extensions and High-bandwidth memory (HBM) that will be
available on the RHEA chip.

3.1.1 Optimizations for SVE

In the context of optimizing the Bolt65 application through the utilization of ARM SVE vector ex-
tensions, we examined and tested various vectorized implementations of the application. This
included assessing auto-vectorization, manual vectorization, and a hybrid approach that combines
both methodologies. The objective was to compare the performance benefits of three different
implementations and try to find the optimal trade-off between the investment of effort required to
adapt the application source code and the resulting performance gains.

Auto-vectorization

Most compilers will try to automatically vectorize code without any additional input from the user.
Therefore, the auto-vectorization implementation does not require any changes to the source code.
This implementation requires minimal effort from the developers, but the efficiency of the application
optimization is entirely dependent on the compiler’s ability to identify and vectorize part of the source
code.
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Manual Vectorization

In a manually vectorized implementation, developers are tasked with rewriting specific segments or the
entirety of the source code, employing dedicated SVE intrinsic to utilize the processor’s vectorization
capabilities. While this approach demands a specialized understanding of the application and its
implementation, it offers the advantage of tailoring the code to the specific architecture of the platform,
which can result in increased performance efficiency.

The primary challenge of this implementation is to identify the parts of the code that are suitable for
manual vectorization. Completely rewriting the application using SVE intrinsics would be a challenging
and time-consuming task. Consequently, we analyzed and profiled the application to identify key
kernels and to pinpoint methods and algorithms that significantly contribute to the overall application
runtime. For a more in-depth understanding, the findings of this profiling effort are outlined in the
deliverable “D3.1 Application Analysis Report” [10].

In the Bolt65 manually vectorized codebase, we identified and implemented ten kernels using SVE
intrinsics:

• Discrete Cosine Transform (DCT) and Inverse Discrete Cosine transform (IDCT)

• Quantization and De-quantization

• Sum of absolute differences (SAD)

• Residual substraction

• Intra-prediction kernels: 3-tap filter, Planar, DC, and Angular prediction

Figure 50 illustrates the high-level structure of the Bolt65 transcoder, featuring highlighted manually
vectorized blocks. Modules highlighted in red indicate that all kernels within that module are manually
vectorized, whereas orange modules signify that only some of the kernels have undergone manual
vectorization.

To illustrate the transition from scalar to manually vectorized code using SVE intrinsics, the following
code snippet provides two examples of kernels implemented with SVE: SAD and quantization.

1 //Scalar implementation
2 int Scalar::SAD(unsigned char* block_1, unsigned char* block_2, int puWidth, int

puHeight)→˓

3 {
4 int result = 0;
5 for (int i = 0; i < puHeight; ++i)
6 {
7 for (int j = 0; j < puWidth; ++j)
8 {
9 result += abs(block_1[i * puWidth + j] - block_2[i * puWidth +

j]);→˓

10 }
11 }
12

13 return result;
14 }
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Figure 50: Top level scheme of Bolt65 transcoder with highlighted manually vectorized code

15 //Manually vectorized implementation
16 int SVE::SAD(unsigned char* block_1, unsigned char* block_2, int puWidth, int

puHeight)→˓

17 {
18 size_t svewidth = svcntb();
19 int maxNum = svewidth / sizeof(unsigned char);
20

21 int matrixSize = puHeight * puWidth;
22

23 if (matrixSize < maxNum)
24 maxNum = matrixSize;
25

26 svbool_t predicate = svwhilelt_b8_s32(0, maxNum);
27

28 svuint8_t orig, pred, absdiff;
29 int64_t sum = 0;
30

31 for (int i = 0; i < matrixSize; i = i + maxNum)
32 {
33 if (i + maxNum > matrixSize)
34 predicate = svwhilelt_b8_s32(0, matrixSize - i);
35

36 orig = svld1_u8(predicate, block_1 + i);
37 pred = svld1_u8(predicate, block_2 + i);
38

39 absdiff = svabd_u8_x(predicate, orig, pred);
40

41 sum = sum + svaddv_u8(predicate, absdiff);
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42 }
43

44 return (int)sum;
45 }
46

47

48 //Scalar implementation
49 void Scalar::quantization(int16_t *A, int QP, int NB, int N, bool* is_zero_matrix,

int16_t* C)→˓

50 {
51 int M = ComUtil::logarithm2(N);
52 int bdShift = 29 - M - NB;
53

54 int coeffMin = -32768;
55 int coeffMax = 32767;
56

57 int mScalingFactor = 16;
58 int i;
59 *is_zero_matrix = true;
60

61 for (i = 0; i < N; i++)
62 {
63 for (int j = 0; j < N; j++)
64 {
65 int sign = 1;
66 if (*(A + i * N + j) < 0)
67 sign = -1;
68

69 *(C + i * N + j) = (((abs(*(A + i * N + j)) * f[QP % 6] + (1
<< (bdShift - 1))) >> QP
/ 6) >> bdShift);

→˓

→˓

70 *(C + i * N + j) = ComUtil::clip3(coeffMin, coeffMax, *(C + i
* N + j) * sign);→˓

71

72 if (*(C + i * N + j) != 0)
73 *is_zero_matrix = false;
74 }
75 }
76

77

78 }
79 //Manually vectorized implementation
80 void SVE::quantization(int16_t * A, int QP, int NB, int N, bool * is_zero_matrix,

int16_t * C)→˓

81 {
82 int M = ComUtil::logarithm2(N);
83 int bdShift = 29 - M - NB;
84 int mScalingFactor = 16;
85 *is_zero_matrix = true;
86 int matrixSize = N * N;
87

88 size_t svewidth = svcntb();
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89 int maxNum = svewidth / sizeof(int32_t);
90 if (matrixSize < maxNum)
91 maxNum = matrixSize;
92

93 svbool_t predicate = svwhilelt_b32_s32(0, maxNum);
94 svint32_t data, absdata;
95

96 svint32_t mult = svdup_n_s32(f[QP % 6]);
97 svint32_t shiftOffset = svdup_n_s32(1 << (bdShift - 1));
98

99 for (int i = 0; i < matrixSize; i = i + maxNum)
100 {
101 data = svld1sh_s32(predicate, A + i);
102

103 absdata = svabs_s32_x(predicate, data);
104

105 absdata = svmul_s32_x(predicate, absdata, mult);
106 absdata = svadd_s32_x(predicate, absdata, shiftOffset);
107 absdata = svasr_n_s32_x(predicate, absdata, ((QP / 6) + bdShift));
108

109 data = svneg_s32_m(absdata, svcmplt_n_s32(predicate, data, 0),
absdata);→˓

110

111 if (svptest_any(predicate, svcmpne_n_s32(predicate, data, 0)))
112 *is_zero_matrix = false;
113

114 svst1h_s32(predicate, C + i, data);
115 }
116 }
117

It’s worth noting that the definitions of the scalar and manually vectorized methods are identical.
The only difference is in its implementation. To exploit this fact, we established an interface that
outlines all methods with differing implementations. Subsequently, specific classes (Scalar, SVE, etc.)
were created to implement that interface. This design ensures a straightforward transition between
manually vectorized and scalar implementations.

Combination of Manual and Auto-vectorization

In the manual implementation, we incorporated SVE intrinsics to implement ten key kernels, while
the remaining code retained a conventional scalar approach. To explore different scenarios, we
introduced a third implementation, in which we continued to employ manually vectorized code as
previously described, but the rest of the application’s code was auto-vectorized by the compiler.

Experimental Results

Use cases and test environment for conducting experiments on Bolt65 are described in more detail
in the preceding deliverable “D3.1 Application Analysis Report” [10]. Since the initial experimen-
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tation setup, we have decided to incorporate an additional Bolt65 encoder configuration into our
experiments. In addition to the low-complexity and high-complexity benchmarks, we introduced the
All-Intra benchmark. In this configuration, the Bolt65 encoder is set so that every frame in a video
sequence is intra-coded. All-intra compression demands less processing power for both encoding
and decoding video sequences. Furthermore, it exhibits increased resilience to errors as it doesn’t
rely on information from previous frames. However, coding efficiency is not as good as when using
Inter prediction. Consequently, for the experiments, we have three different benchmarks based on
the encoding configuration:

• Low-complex - high computational complexity benchmark (INTER and INTRA prediction)

• High-complex - low computational complexity benchmark (INTER and INTRA prediction)

• All-intra - all intra-frame coding

For each of the three benchmarks, we employ the same test set of video sequences, encompassing
a spectrum of spatial resolutions and frame rates. In addition to the initially defined set of video
sequences, we’ve introduced an extra FullHD sequence. The comprehensive list of 10 test video
sequences is provided in the table 13:

Video name Resolution Frames Frame rate

1 Akiyo 176x144 300 30

2 Mobile 352x288 300 30

3 Soccer 704x576 600 60

4 City 704x576 600 60

5 Johnny 1280x720 600 50

6 ParkRun 1280x720 500 60

7 Shields 1280x720 500 60

8 BasketballDrive 1920x1080 500 50

9 BlueSky 1920x1080 217 25

10 RushHour 1920x1080 500 25

Table 13: Test video sequences

All experiments were conducted using two different compilers: ARM’s armclang and Fujitsu’s FCC.
This approach allowed us to thoroughly explore and compare the vectorization capabilities of
these particular compilers. It also provided insights into the distinctions between manual and
auto-vectorization.

Compilation and Execution The Bolt65 codebase remains consistent across all mentioned imple-
mentations including scalar, auto-vectorization, manual vectorization, and a combination of manual
and auto-vectorization. Therefore, there is no need for maintaining multiple versions of the code or
introducing changes between these various implementations.

To determine which implementation to employ, we can simply set the appropriate flags during
compilation and/or configure specific parameters during execution. The combination of compilation
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flags and runtime parameters uniformly determines which implementation is being used. This
adaptable approach, based on the specified compilation and runtime settings, allows for a seamless
transition between different optimization strategies. Table 14 shows which flags have to be set in
order to run a specific implementation.

Compile time flags Parameters during execution

Scalar –fno-vectorize

Manual vectorization -march=armv8-a+sve –fno-vectorize –sve

Auto-vectorization -march=armv8-a+sve

Auto and manual vectorization -march=armv8-a+sve –sve

Table 14: Implementation parameters

The compiler “-fno-vectorize” flag explicitly instructs the compiler not to use any form of automatic
vectorization. It is valid for both compilers used in these experiments. During execution, the "–sve"
parameter serves as an application-specific flag, dictating whether the application should utilize the
regular scalar implementation or the manually vectorized one for key kernels. When the "–sve" flag is
set, manual vectorization will be applied; otherwise, a scalar version of the methods will be utilized.

Results The primary objective of conducting these experiments was to observe the performance
difference among different implementations and to investigate the influence of the compiler on the
obtained results. Therefore, our initial measurements focused on collecting the runtimes of the Bolt65
encoder.

In Figure 51, the results of encoding all ten video sequences are presented across four different
encoding configurations (scalar, auto, manual, and auto+manual), utilizing two different compilers
(arm-clang and fcc). The graphs in the first column depict results for the armclang compiler, while
those in the second column illustrate the outcomes obtained with the FCC compiler. Table 15 and
16 show the speed-up of auto, manual, and combined implementations compared to the scalar
implementation without any optimizations.

The results indicate that auto-vectorization generally provides a speed-up compared to scalar im-
plementation in almost all cases. For armclang, the average speedup of auto-vectorization is x1.16,
x1.27, and x1.22 for all-intra, low-complex, and high-complex use cases respectively. In the case
of FCC compiler, the average speedups are x1.17, x1.17, and x0.96. It’s worth noting that for
auto-vectorization in the high-complexity encoding configuration with FCC, the performance is even
worse than the scalar version. All speedups are calculated as a ratio between scalar and vectorized
implementation.

While the speed-ups from auto-vectorization are noticeable, they are not substantial. However, the
introduction of manually vectorized code demonstrates fairly better speed-up. For armclang, the
observed speed-up ranges from x1.84 to x2.50 on average, depending on the encoder configuration.
Similarly, for FCC, the speed-ups vary from x1.69 to x2.44. Given that the combination of auto and
manual vectorization implements the same manually vectorized kernels as pure manual vectorization,
with the rest of the code being auto-vectorized, a modest performance improvement is expected
compared to manual vectorization alone. For armclang, speedup of combined implementation
compared to scalar ranges from x1.85 to x2.57, and for FCC, it varies from x1.70 to x2.52.
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Figure 51: Performance comparison

To facilitate a more comprehensive comparison between two different compilers, we computed the
overall time required to encode all video sequences for each configuration. The results are illustrated
in Figure 52.

The comparison between Fujitsu’s FCC compiler and ARM’s armclang reveals that FCC is faster
than armclang for the scalar implementation across all encoding configurations. In the case of
auto-vectorization, FCC exhibits faster performance for the All-intra and Low-complex encoding
configurations, although the gaps are narrower compared to the scalar implementation. However, for
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Video Intra Low-complex High-complex

Name AUTO MAN COMB. AUTO MAN COMB. AUTO MAN COMB.

Akiyo x1.13 x1.68 x1.68 x1.27 x2.62 x2.70 x1.22 x2.57 x2.59

Mobile x1.10 x1.43 x1.43 x1.17 x1.70 x1.70 x1.18 x1.90 x1.88

Soccer x1.18 x1.93 x1.95 x1.29 x2.58 x2.64 x1.24 x2.44 x2.46

City x1.16 x1.77 x1.78 x1.27 x2.38 x2.43 x1.22 x2.28 x2.28

Johnny x1.21 x2.21 x2.24 x1.33 x3.23 x3.35 x1.26 x2.81 x2.85

Park run x1.11 x1.51 x1.50 x1.22 x1.98 x2.01 x1.21 x2.09 x2.08

Shields x1.13 x1.65 x1.65 x1.27 x2.36 x2.41 x1.21 x2.19 x2.18

Basketball D. x1.18 x1.98 x1.98 x1.29 x2.66 x2.73 x1.22 x2.36 x2.37

Blue sky x1.17 x1.89 x1.89 x1.28 x2.50 x2.55 x1.23 x2.40 x2.39

Rush hour x1.23 x2.35 x2.37 x1.32 x3.01 x3.18 x1.24 x2.63 x2.65

Average x1.16 x1.84 x1.85 x1.27 x2.50 x2.57 x1.22 x2.37 x2.37

Table 15: Speedups with armclang compiler

Video Intra Low-complex High-complex

Name AUTO MAN COMB. AUTO MAN COMB. AUTO MAN COMB.

Akiyo x1.13 x1.56 x1.56 x1.14 x2.52 x2.58 x0.94 x1.94 x1.94

Mobile x1.10 x1.36 x1.34 x1.10 x1.59 x1.60 x0.98 x1.53 x1.52

Soccer x1.19 x1.77 x1.79 x1.20 x2.50 x2.60 x0.97 x1.83 x1.84

City x1.17 x1.64 x1.65 x1.18 x2.28 x2.35 x0.96 x1.74 x1.74

Johnny x1.22 x2.00 x2.03 x1.23 x3.34 x3.53 x0.95 x2.00 x2.02

Park run x1.12 x1.43 x1.42 x1.13 x1.87 x1.90 x0.98 x1.64 x1.64

Shields x1.14 x1.54 x1.55 x1.17 x2.25 x2.31 x0.96 x1.68 x1.69

Basketball D. x1.19 x1.79 x1.81 x1.19 x2.58 x2.69 x0.97 x1.78 x1.79

Blue sky x1.18 x1.72 x1.73 x1.18 x2.43 x2.50 x0.95 x1.78 x1.79

Rush hour x1.24 x2.07 x2.10 x1.21 x3.05 x3.18 x0.94 x1.87 x1.89

Average x1.17 x1.69 x1.70 x1.17 x2.44 x2.52 x0.96 x1.78 x1.78

Table 16: Speedups with FCC compiler

the High-complex encoding configuration, armclang outperforms FCC. This suggests that armclang
demonstrates greater efficiency in optimizing for vectorization.

This trend is further emphasized in manual vectorization, where armclang outperforms FCC in the
All-Intra configuration as well. These observations highlight the efficiency of armclang in vectorization
optimization scenarios.

To gain a better understanding of the differences between different implementations, we extracted a
few hardware counters, focusing on the overall number of instructions and vectorization ratio. The
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Figure 52: Comparison between amrclang and fcc

perf tool, which is readily available on the Irene cluster, was employed for this data extraction. For
these measurements, we used ARM’s compiler.

Figure 53 presents the total number of instructions used to encode all video sequences. For these
experiments, we used armclang compiler.

As expected, the total number of instructions closely mirrors the trends observed in the measurements
of runtime. This alignment suggests that the primary contributor to performance improvement is the
reduction in the number of instructions achieved through vectorization. This insight leads to another
crucial metric for understanding the application’s optimization through vectorization - the vectorization
ratio.

Figure 54 shows the average vectorization ratio for each implementation (using armclang compiler).
The vectorization ratio is calculated as sve_inst_retired / instructions, where sve_inst_retired and
instructions are hardware counters defined in the perf tool.

As evident from the graphs, the vectorization ratio of the auto-vectorization implementation is relatively
low, ranging from 0.75% to 4.34%. In contrast, pure manual vectorization achieves a vectorization
ratio between 4.9% and 12.67%, while in the combined vectorization implementation, 5.1% to 13.52%
of the code is vectorized.
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Figure 53: The overall number of instructions

Figure 54: Vectorization ratio

Conclusion

The experiments reveal that auto-vectorization performed automatically by the compiler, without any
additional input from the user, can give some performance improvements. However, the benefits can
be significantly higher by manually vectorizing the application’s code. Although manual vectorization
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of the source code potentially requires a lot of effort, we showed that by selecting and manually
vectorizing only a small subset of kernels, noticeable speedup can still be achieved.

Given that the Bolt65 codebase is extensive, containing hundreds of different kernels, rewriting the
entire application and adapting it to SVE intrinsics would demand an effort comparable to creating
the application from scratch. Thus, through extensive profiling and analysis of the application, we
identified several key kernels, that consume most of the time in the application life cycle. With this
targeted approach, we achieved a vectorization ratio of 4.9%-13.52% and an average speedup rang-
ing from x1.60 to x2.52. It is important to note that all the numbers were extracted at the application
level, encompassing all parts of the code in the analysis, including memory-related operations and
non-vectorizable code, influencing the vectorization ratio.

Furthermore, we demonstrated that although different compilers yield similar conclusions in perfor-
mance analysis of various implementations, there are still subtle differences that can potentially have
an impact on the application running in real, production-level, systems.

3.1.2 Optimizations for HBM

The preliminary analysis and profiling of the basic scalar Bolt65 implementation on A64FX revealed
a notable decrease in the share of memory-related operations compared with the same analysis
conducted on a regular desktop Intel i5 CPU. The details of the analysis were given in the previous
deliverable D3.1 [10], but the overall results are summarized in Figure 55. The graph depicts profiling
on two distinct architectures: on an Intel i5 CPU profiled with Intel Vtune Amplifier and on the Irene
cluster with A64FX profiled using perf. The results illustrate the average contribution of each function
to the Bolt65 encoder runtime.

Figure 55: Profiling results
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Share of memory-related methods, such as “fetchBlockFromReferenceFrame”, “get1dBlock”, and
“fill1dBlock” are much lower on A64FX than on Intel CPU. The most significant difference is observed
for the “fetchBlockFromReferenceFrame” method, where the share drops from 23.7% to 4.12% for the
high-complex use-case, and from 8.2% to 0.8% for the low-complex use-case. To visually represent
the disparity in memory-focused methods between the two architectures, we selectively extracted
only these methods for both architectures and illustrated them in Figure 56

Figure 56: Share of memory-focused methods

To further investigate memory impact in the overall application life cycle, we extended our investi-
gation to measure the application’s memory footprint. Following the same experimental setup as
described in previous chapter, but utilizing the perf tool to gather several hardware counters re-
quired to calculate memory data volume: L2D_CACHE_REFILL, L2D_CACHE_WB, L2D_SWAP_DM,
L2D_CACHE_MIBMCH_PRF. The formulas employed for calculating the memory bandwidths are as
follows:

Memory read bandwidth [MBytes/s]
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1.0𝐸−06*(𝐿2𝐷_𝐶𝐴𝐶𝐻𝐸_𝑅𝐸𝐹𝐼𝐿𝐿−(𝐿2𝐷_𝑆𝑊𝐴𝑃_𝐷𝑀+𝐿2𝐷_𝐶𝐴𝐶𝐻𝐸_𝑀𝐼𝐵𝑀𝐶𝐻_𝑃𝑅𝐹 ))*
256.0/𝑟𝑢𝑛𝑡𝑖𝑚𝑒

Memory read data volume [GBytes]

1.0𝐸−09*(𝐿2𝐷_𝐶𝐴𝐶𝐻𝐸_𝑅𝐸𝐹𝐼𝐿𝐿−(𝐿2𝐷_𝑆𝑊𝐴𝑃_𝐷𝑀+𝐿2𝐷_𝐶𝐴𝐶𝐻𝐸_𝑀𝐼𝐵𝑀𝐶𝐻_𝑃𝑅𝐹 ))*
256.0

Memory write bandwidth [MBytes/s]

1.0𝐸 − 06 * (𝐿2𝐷_𝐶𝐴𝐶𝐻𝐸_𝑊𝐵) * 256.0/𝑟𝑢𝑛𝑡𝑖𝑚𝑒

Memory write data volume [GBytes]

1.0𝐸 − 09 * (𝐿2𝐷_𝐶𝐴𝐶𝐻𝐸_𝑊𝐵) * 256.0

Memory bandwidth [MBytes/s]

𝑀𝑒𝑚𝑜𝑟𝑦 𝑟𝑒𝑎𝑑 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ+𝑀𝑒𝑚𝑜𝑟𝑦 𝑤𝑟𝑖𝑡𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

Memory data volume [GBytes]

𝑀𝑒𝑚𝑜𝑟𝑦 𝑟𝑒𝑎𝑙 𝑑𝑎𝑡𝑎 𝑣𝑜𝑙𝑢𝑚𝑒+𝑀𝑒𝑚𝑜𝑟𝑦 𝑤𝑟𝑖𝑡𝑒 𝑑𝑎𝑡𝑎 𝑣𝑜𝑙𝑢𝑚𝑒

It’s worth noting that the Likwid tool employs the same set of formulas for calculating these metrics.

In Table 17 and Table 18 we present the data obtained for the most memory-intensive video sequence
in the test set, RushHour, which uses FullHD 1920x1080 resolution and contains 600 frames. Table 17
shows the overall data volume (in GBytes) when encoding the RushHour sequence in all encoding
scenarios, while Table 18 shows the corresponding memory bandwidth (in MBytes/s).

SCALAR AUTO MANUAL AUTO + MAN

Intra
Read 68.89 69.17 69.28 69.26

Write 45.23 45.32 45.54 45.82

Overall 114.12 114.49 114.82 115.08

Low-complex
Read 43.02 43.21 42.96 43.14

Write 30.56 30.61 30.61 30.45

Overall 73.59 73.82 73.57 73.60

High-complex
Read 112.96 112.80 113.40 113.06

Write 65.65 65.54 66.23 66.06

Overall 178.61 178.34 179.63 179.11

Table 17: Overall memory volume [GBytes]

The overall data volume remains consistent across all implementation types (scalar, auto, manual,
auto+manual), as expected, given that the application architecture remains the same in all cases,
with the only variation being in the vectorized implementation of specific kernels. However, due to
the faster execution of vectorized implementations, the memory bandwidth increases for the faster
implementations.
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SCALAR AUTO MANUAL AUTO + MAN

Intra
Read 75.13 92.12 177.54 180.17

Write 49.33 60.35 116.70 119.21

Overall 124.45 152.48 294.24 299.39

Low-complex
Read 70.10 92.92 211.49 221.19

Write 49.80 65.81 150.70 156.14

Overall 119.90 158.73 362.19 377.33

High-complex
Read 56.76 70.55 150.53 150.64

Write 32.99 41.00 87.91 88.01

Overall 89.74 111.55 238.44 238.66

Table 18: Overall memory bandwidth [MBytes/s]

In the high-complex encoding configuration, encoding RushHour with the auto+manual implementa-
tion stands out as the most memory-intensive scenario, with an overall memory bandwidth reaching
377 MBytes per second.

Conclusion The Bolt65 encoder’s maximum overall memory bandwidth in the experiments reaches
approximately 377 MB/s, which is notably lower than the bandwidth of any DDR or HBM memory.
Furthermore, there is a consistent increase in memory bandwidth depending on the implementation.
With faster computation, a proportional increase in overall memory bandwidth is achieved. This
data, derived from profiling experiments, strongly suggests that memory-related operations are
currently not the bottleneck of the system for Bolt65 encoding. This insight directed our optimization
efforts more towards enhancing computation kernels using vectorization than focusing on improving
memory-related aspects of the application.

However, it’s essential to note that more complex scenarios in video encoding/transcoding involve
handling higher-resolution video sequences, such as emerging 4k and 8k resolutions. Unfortunately,
we were unable to include these resolutions in our experiments due to memory limitations and
restrictions of the test cluster. Therefore, optimization for High Bandwidth Memory (HBM) and Bolt65,
while not implementable in the current test environment, remains a factor that will be considered in
future work.

3.2 Dyablo - Whole Sun

3.2.1 Introduction

Dyablo is a novel adaptive mesh refinement framework for the simulation of astrophysical plasmas
developed at CEA. The objective of dyablo is to enable high performance computing for any astro-
physical CFD problem from cosmology to exoplanet atmospheres, spanning a very wide range of
temporal and spatial scales. One of the key projects of the development of dyablo is the simulation
of solar-like magneto-hydrodynamic convection within the ERC project Whole Sun. Being able to
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capture the dynamic of the Sun at every important scale require the simulation of a very large number
of cells and thus require very high scalability and performance on modern hardware.

To reach exascale performance, the code relies on the portability performance library Kokkos.
Effectively, Kokkos transforms computation kernels to dedicated architectures/programming models
such as CUDA, HIP, SYCL or OpenMP allowing us to target many different types of hardware. On
top of Kokkos managing shared-parallelism within a single node/computing unit, the full domain is
decomposed into sub-domains synchronised on multiple nodes through MPI.

In the context EUPEX, the CEA dyablo and Atos’ CEPP (Center for Excellence in Performance
Programming) teams are collaborating on the analysis and the optimization of the solar part of dyablo.
This work started early 2023 and is still ongoing. The simulation of the solar use-case requires
the evaluation and the tuning of four main elements: the hydrodynamics, thermal conduction and
viscosity computation kernel, and the AMR (adaptive mesh refinement) management cycle. Since all
evaluations on EUPEX are done on a single-node setup, load balancing is not evaluated. Similarly,
I/O questions are less relevant to EUPEX and are also ignored in this study.

The use-case used in the collaboration is the simulation of a convective cartesian slab. We initialize a
box with a stratified fluid in hydrostatic equilibrium. We perturb this equilibrium which leads to the
formation of convection cells within the box. Convection is highly turbulent which means the AMR
kernels are highly stressed. Two types of run are made, a benchmarking run which is very short to
evaluate the performance of the code and a validation run, much longer, allowing us to assess if the
use of a specific combination of a compiler/hardware and compilation flags are not invalidating the
results of the code.

In the following, we first describe the systems we used to experiment. After a brief description of what
flags Kokkos propagates, we present the results of our first experiments. Motivated by unexpected
results with one toolchain, we then explore the impact of the Kokkos runtime, and override the default
Kokkos flags to investigate the issue and maximize performance. Finally, we show results comparing
different distribution schemes, as well as studying the impact of the use of HBM, which will equip the
RHEA processor, and then conclude.

3.2.2 Work Done

Test Systems Description

In order to run the benchmarks and verify that produced results are correct, we decided to conduct
the experiments on the following ATOS systems:

• Intel Xeon 8358 (Icelake), 2 sockets, 2x32 cores, 2.6GHz, 256GB DDR4, x86_64, AVX2,
AVX512

• AMD EPYC 7763 (Milan), 2 sockets, 2x64 cores, 2.45GHz, 256GB DDR4, x86_64, AVX2

• Ampere Altra Q8030 (Neoverse N1), single socket, 80 cores, 3GHz, 256GB DDR4, aarch64,
NEON

• Fujitsu FX700 (A64FX), single socket, 48 cores, 1.8GHz, 32GB HBM2, aarch64, NEON, SVE
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The AMD and Intel systems are used as reference systems, that is the historical x86_64 instruction
set with vector extensions (AVX2, AVX512). They will be referred to as the x86 systems in the
following. The Fujitsu system is used to validate that targeting SVE system does not alter compilation
and result correctness after execution. The Ampere Altra system is used to test initial performance
evaluation on aarch64 without SVE. These 2 systems will be referred to as ARM systems in the
following.

Indeed, although the A64FX architecture offers SVE and HBM, its internal micro architecture is that
of a SPARC from earlier Fujitsu CPU generations, with an ARM frontend [55]. Moreover, the memory
layers do not expose an L3 cache. In short, it is quite far from what the RHEA processor will be. Early
performance results comfort this position (see below). It exposes HBM, but from an older generation
(HBM2 on A64FX, versus HBM2e on RHEA or Sapphire Rapids) and with limited quantity (32GB
only). Finally, its lack of DDR prevents fair comparisons between the two memory technologies.

For the x86 systems, we targeted the following toolchains:

• Intel “Classic” (icc/icpc/ifort): considered the best-in-class when we started the study. Although
OneAPI is closing the gap with its predecessor in terms of performance, we could still observe
some runtime issues leading to bug reports.

• GCC: Still considered the most stable compiler for all machines.

• AOCC: To verify the behavior of LLVM based compiler on x86, we chose to use the AMD
compiler, that is based on LLVM.

For the ARM systems, we targeted the following toolchains:

• Arm Compiler for Linux (ACFL): considered the best-in-class for performance when targeting
ARM systems; LLVM based compiler.

• GCC: Also considered the most stable on ARM systems. Behaves similarly on x86 and ARM,
can be used for comparison.

Finally, since the ARM CPUs do not provide any Simultaneous MultiThreading (SMT) feature, and
since SiPearl did not announce such feature for RHEA, we decided to disable SMT during all our
experiments.

Initial Issues with Kokkos

Dyablo is mostly built around the Kokkos C++ Programming Model - Parallel Execution and Memory
Abstraction1. Kokkos is a set of headers, mainly consisting of routines and templates that are
compiled when building the final application or library. Only a small runtime is compiled beforehand,
when building the Kokkos library. Following the recommendations, dyablo trusts Kokkos for setting its
build flags: "Kokkos propagates all the necessary flags to your project."2.

Kokkos propagates the flags to the projects in three different ways, specified by the user:

• Default: When the user does not specify anything, Kokkos passes the -O3 flag to the compiler.

1Kokkos: https://kokkos.org/about/
2https://github.com/kokkos/kokkos/blob/master/BUILD.md
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• Native: If specified via KOKKOS_ARCH_NATIVE=ON, Kokkos will append -march=native and -mtune=native
to the -O3 flag.

• Arch specific: Kokkos allows the user to target a specific architecture using a predefined
dictionary of optimized flags for each pair (target CPU, target compiler)3. For instance, the flag
definition when targeting A64FX is the following:

Clang -march=armv8.2-a+sve -msve-vector-bits=512
GNU -march=armv8.2-a+sve -msve-vector-bits=512
MSVC NO-VALUE-SPECIFIED
NVHPC NO-VALUE-SPECIFIED
DEFAULT -march=armv8.2-a+sve

The observation of this particular example unveils several issues:

• Recent compilers are aware of the A64FX micro-architecture, and -march=a64fx is available in
GCC since version 10, and in LLVM since version 11. The -march=a64fx specification enables
armv8.2, SVE, but also some side extensions available on the CPU. This issue is bound to
be true for any recent CPU, where both the compiler and the Kokkos CMake file need to be
updated in order to exploit the latest features.

• As stated by ARM, but also valid for all CPU families except x86, the -march -mtune scheme is
subsumed by -mpcu4. This ensures both the instruction set and micro architecture features (for
instance, presence of two pipelines per core) are properly exploited.

We can observe similar issues when we look at the native example above:

• -mtune=native does not work on ARM systems with LLVM based compilers, including ACFL.
As per ARM recommendations, -mcpu=native is to be used instead. The CMake file has been
fixed since our initial experiments5.

• Some compilers use another set of flags, for instance NVHPC uses -tp=native.

From these few observations, we can conclude that trusting the default Kokkos flag propagation
is either non-working or suboptimal when targeting performance, especially when targeting recent
machines.

Another concern lies behind using aggressive math assumptions (usually referenced as fast math
mode) by default. Indeed, they can raise issues around semantic correctness6, but more importantly
it is unfair when comparing the ability of other compilers. Indeed, if the default behavior of the Intel
compilers is to apply such optimizations, we should either be applying them by default on other
compilers or be disabling them on Intel compilers.

For the sake of maximized performance, we chose to apply the fast math flags on all compilers.
These flags can be overridden by setting the usual CMake flags:

-DReleaseType="None"
-DCMAKE_CXX_FLAGS="<compile flags>"

3https://github.com/kokkos/kokkos/blob/master/cmake/kokkos_arch.cmake
4https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/
compiler-flags-across-architectures-march-mtune-and-mcpu

5https://github.com/kokkos/kokkos/issues/5808
6https://github.com/spack/spack/discussions/38689
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ARM Software Stack Check and Preliminary Performance Assessment

During this step we verify that the application is behaving similarly on the ARM system as it is on the
reference systems, that are Intel and AMD x86 systems. The following points are verified:

• Compilation with available toolchains: verify which compilers can build the application, using
the custom set of flags we defined.

• Numerical validation: for every version that we could build, verify that the application produces
results within acceptable deviation margin.

• Early performance analysis: given the theoretical peak performance of the machine and
measured time to solution; we can draw rough conclusions about performance disparities
between ARM and X86 systems.

For all these toolchains, we did override the default compiler flags, mainly to:

• Target the machine micro architecture (initially broken on ARM systems, see above)

• Force fast math on all compilers, as the Intel compilers does by default.

The test cases start from an initialised box (as stated in the introduction), set at simulated time of 6.
The full test case simulates 44 seconds, until simulated time 50; whereas the shorter case stops after
1000 steps, that is around 0.08 seconds.

Table 19 presents the results we obtained on the shorter case. We can observe that all the configura-
tions led to proper build, execution.

CPU Compiler Execution Time (s)

AMD EPYC 7763 AOCC 156.02
GCC 137.039
Intel 213.666

Ampere Altra Q8030 ACFL 152.846
GCC 179.02

Fujitsu FX700 ACFL 981.171
GCC 1271.63

Intel Xeon 8358 AOCC 261.664
GCC 217.436
Intel 347.98

Table 19: Dyablo runtime for the shorter test case using the different configurations

To further validate, we ran the full simulation, until simulated time of 50. The performance results are
shown in Table 20. Also, this full run allowed us to observe the numerical deviation over the internal
energy. This value is represented in Figure 57.

Intel Suite Results The execution on the Icelake system using the Intel compiler led to a SLURM
timeout: it went over the time limit of 2 days we specified for this job. After further investigations,
this job stopped at simulated time of 46 seconds (out of 50), with snapshot values within acceptable
margin. The unexpected poor performance using this toolchain compared to GCC is discussed in the
build flags study section.
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CPU Compiler Execution Time (s)

AMD EPYC 7763 AOCC 80612.3
GCC 75343
Intel 111878

Ampere Altra Q8030 ACFL 83620.5
GCC 96228

Intel Xeon 8358 AOCC 136324
GCC 112628
Intel SLURM Timeout (2 days)

Table 20: Dyablo runtime for the full test case using the different configurations

Figure 57: Value of the internal energy during the simulation. We can observe a slight numerical
deviation occurring at simulated time of 35, for all tested configurations.

ARM Support We identified a few issues when building on ARM systems. They are mentioned
briefly in the section above and fixed in the related upstream projects at the time of writing (Kokkos,
CMake).

A64FX Results Given the long time it takes to run this full simulation (20h on our fastest configura-
tion), and poor performance of the A64FX (7x slower when running the shorter test case), we decided
to not run this full simulation on A64FX. We trust the numerical stability we observed on the short test
will remain within acceptable margin when running on SVE. Although not presented in this document,
we have validated that it does not deviate up to step 10000. Validating the full run on SVE is one of
the first experiments we will do when we have access to Grativon3, or RHEA in the longer term.

Numerical Validation As shown in figure 57, we can observe a slight deviation in the energy value
starting around simulated time 35. This is, however, within an acceptable margin.

Performance The first observation we can make is that, although not fitting perfectly, the time to
solution difference between configurations (CPU and compiler) remains similar when we change the
simulation duration. For instance, in the 1000 steps case, the run with GCC on the Icelake is 18%
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slower than the run with GCC on Neoverse-N1 (Table 19), while the difference is 15% in the full run
(Table 20). This allows us to use faster benchmarking in the following studies while keeping results
representative enough for a first glance.

Second, we can observe from both Tables 19 and 20 (respectively short and full run) that the time to
solution of the single socket Neoverse-N1 configuration is in between the performance of the dual
socket Milan and of the dual socket Icelake systems. During these preliminary experiments, we
followed developer recommendations by starting one process per socket. According to internal timers,
the MPI overhead due to running on two-socket machines is around 15%. Further experiments
(see section 3.2.2) have shown that this still brings best performance in most configurations, even
compared to running with a single MPI process on the whole bi-socket machines. However, and
even considering this overhead, the performance of the Neoverse-N1 ranks at a similar efficiency
(time-to-solution / theoretical RPEAK).

Kokkos Runtime Flags Impact

The study of the Kokkos runtime flags impact was quite straightforward: we always built dyablo with
the same flags but linking against a Kokkos runtime built with different flag sets. Along with the three
different sets of flags Kokkos uses, described in the previous section, we also added a 4th way forcing
the -O0 flag. As shown in table 21, the variation is negligible, even when comparing Kokkos built with
-O0 against Kokkos build with more aggressive -O3 plus native flags. Only one configuration (line 10)
led to significant degradation, that we could reproduce. However, we did not spend time investigating
this particular case.

From these results we can assume that Kokkos runtime indeed has neglectable to no impact on the
performance of dyablo.

Build Flags Overriding

In the previous section, we decided to override the default flags, propagated by Kokkos, to force fast
math and properly target the native host, on top of applying level 3 optimizations. We refer to this
configuration as "custom" in the following, in contrast with the "default" set of flags set by Kokkos.
This led the Intel suite to produce binaries running unexpectedly slower than GCC. Our investigation
into these poor results started with falling back to the default flags.

As shown in lines 6 and 20 of Table 22, overriding the flags with native target degrades performance
by 5 to 11% when compiling with the Intel suite. This has been confirmed when checking the
build log files: the only difference is the -xhost flag (equivalent to -march/-mtune=native when
using the Intel suite). We also applied the recommendations from AMD (-march=core-avx2) 7 and
Intel (-xCOMMON-AVX512) 8, leading to the same results as when using -xhost. Using the default
flags, but hinting Kokkos with KOKKOS_ARCH_NATIVE=ON and KOKKOS_ARCH_ICX=ON led also to similar
degradation.

7https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/
compiler-options-quick-ref-guide-epyc-7xx3-series-processors.pdf

8https://www.intel.com/content/www/us/en/developer/articles/guide/relion-3-1-tuning-guide-on-xeon-based-platforms.
html
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# CPU Compiler Kokkos Runtime Build Flags Dyablo Execution Time (s) vs -O0 (%)

1 AMD EPYC 7763 AOCC -O0 159.256
2 Native 160.751 0.94 %
3 Default 160.873 1.02 %
4 ARCH=ZEN3 158.796 -0.29 %
5 GCC -O0 132.682
6 Native 132.025 -0.50 %
7 Default 133.262 0.44 %
8 ARCH=ZEN3 132.949 0.20 %
9 Intel -O0 207.643

10 Native 248.866 19.85 %
11 Default 209.291 0.79 %
12 ARCH=ZEN3 206.249 -0.67 %

13 Ampere Altra Q8030 ACFL -O0 153.153
14 Native 153.336 0.12 %
15 Default 152.658 -0.32 %
16 ARCH=ARMV8.1 152.977 -0.11 %
17 GCC -O0 171.197
18 Native 172.035 0.49 %
19 Default 173.113 1.12 %
20 ARCH=ARMV8.1 171.881 0.40 %

21 Fujitsu FX700 ACFL -O0 975.215
22 Native 956.436 -1.93 %
23 Default 957.039 -1.86 %
24 ARCH=A64FX 985.533 1.06 %
25 GCC -O0 1234.20
26 Native 1227.97 -0.50 %
27 Default 1224.19 -0.81 %
28 ARCH=A64FX 1224.66 -0.77 %

29 Intel Xeon 8358 AOCC -O0 223.921
30 Native 223.481 -0.20 %
31 Default 223.484 -0.20 %
32 ARCH=ICX 223.362 -0.25 %
33 GCC -O0 204.711
34 Native 204.262 -0.22 %
35 Default 211.744 3.44 %
36 ARCH=ICX 203.509 -0.59 %
37 Intel -O0 307.045
38 Native 305.829 -0.40 %
39 Default 306.682 -0.12 %
40 ARCH=ICX 306.198 -0.28 %

Table 21: Dyablo runtime for the shorter test case, depending on Kokkos runtime library compiler
flags. We can observe negligible to no impact.

The same experiment was also applied to other CPUs and compilers. As presented in the remaining
of Table 22, gains vary between negligible up to around 25% on the Fujitsu FX700 (A64FX).

This study allows us to confirm the importance of flags when dealing with Kokkos and recent micro
architectures. We could report the unexpected results to upstream technology providers. Finally, our
next studies will be driven by these results.

EUPEX - 101033975 105 31.12.2023



D3.2 Applications optimised for SVE and HBM

# CPU Compiler Application Build Flags Execution Time (s) vs default (%)

1 AMD EPYC 7763 AOCC default 147.682
2 custom 149.226 1.05 %
3 GCC default 135.929
4 custom 120.616 -11.27 %
5 Intel default 183.488
6 custom 193.224 5.31 %

7 Ampere Altra Q8030 ACFL default 153.276
8 custom 150.359 -1.90 %
9 GCC default 176.48

10 custom 170.104 -3.61 %

11 Fujitsu FX700 AOCC default 1160.76
12 custom 925.105 -20.30 %
13 GCC default 1584.64
14 custom 1194.96 -24.59 %

15 Intel Xeon 8358 AOCC default 232.718
16 custom 211.189 -9.25 %
17 GCC default 211.744
18 custom 190.701 -9.94 %
19 Intel default 275.143
20 custom 307.554 11.78 %

Table 22: Dyablo runtime for the shorter test case, with different build flags on the different configura-
tions.We can observe significant degradation when targeting the host machine ("custom")
and using the Intel suite. With other configurations, targeting the host machine leads to
gains up to 24%.

Distribution Schemes and HBM Evaluation

During this study, we evaluated the impact on performance of several process and thread distribution
schemes, as well as forcing the allocation of buffers within the HBM versus DDR5. This involved the
design of a portable methodology for binding to compute and memory resources.

In the remaining, we distinguish 1) the distribution scheme (also referred to as mapping in OpenMPI
--map-by), that is how we choose to distribute processes and threads; from 2) the binding methodology,
that is how we implement this distribution scheme.

Binding Methodology For the binding methodology to be portable, the underlying tools must not de-
pend on vendor specific technologies. For instance, the Intel MPI variables like I_MPI_DOMAIN=socket
will not be interpreted by OpenMPI, and Intel MPI will most likely not be available on ARM systems.
The general idea behind the methodology we used is to rely the portable tool hwloc to bind in a similar
way on every system, and simply ask the launcher (MPI, SLURM, etc.) not to bind anything.

The Portable Hardware Locality (hwloc) software package provides a portable abstraction
(across OS, versions, architectures, ...) of the hierarchical topology of modern archi-
tectures, including NUMA memory nodes (DRAM, HBM, etc.), sockets, shared caches,
cores and simultaneous multithreading. It also gathers various system attributes such
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as cache and memory information as well as the locality of I/O devices such as network
interfaces, InfiniBand HCAs or GPUs. 9

hwloc is developed by Inria Bordeaux, and will be ported to RHEA as part of WP5 of EUPEX. The way
of numbering the resources in a logical way, versus a physical way when using other tools, enforces
that the binding will always be the same, resilient to BIOS updates, OS change, etc.

Figure 58 illustrates an example of binding execution to NUMA 0 of socket 0 but allocating memory to
NUMA 3 of the same socket 0, using the following command:

hwloc-bind --cpubind socket:0.numa:0 --membind socket:0.numa:3 $APP

Figure 58: Illustration of hwloc-bind usage for binding. The output is produced by lstopo, another
tool bundled with the hwloc distribution.

More complex distribution schemes can be constructed in combination with MPI launchers. For
instance, the following command10 will start two MPI processes, asking the MPI launcher to not bind
anything, then assigning 1 socket per rank, and binding to the memory of the NUMAs attached to the
corresponding socket:

mpiexec -n 2 --map-by none --bind-to none \
hwloc --cpubind socket:$MPIRANK \

--membind $(hwloc-calc socket:$MPIRANK --local-memory) \
$DYABLO_EXE $DYABLO_ARGS

As of today, the thread binding must be done using OpenMP environment variables. hwloc provides a
tool (hwloc-calc) to convert a logical resource identifier to its physical identifier. Using this tool, it is
then possible to generate the proper OMP_PLACES, in the following form:

9https://www.open-mpi.org/projects/hwloc/
10The command is simplified for the sake of readability; actual implementation requires the use of wrapper scripts.
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# Rank 0
export OMP_NUM_THREADS=56
export OMP_PROC_BIND=true
export OMP_PLACES="{0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13}, \

{14},{15},{16},{17},{18},{19},{20},{21},{22},{23},{24},{25},{26},{27},{28}, \
{29},{30},{31},{32},{33},{34},{35},{36},{37},{38},{39},{40},{41},{42},{43}, \
{44},{45},{46},{47},{48},{49},{50},{51},{52},{53},{54},{55}"

hwloc-bind core:0-55.pu:0 --membind numa:0 numa:2 numa:4 numa:6 --strict \
$DYABLO_EXE $DYABLO_ARGS

# Rank 1
export OMP_NUM_THREADS=56
export OMP_PROC_BIND=true
export OMP_PLACES="{56},{57},{58},{59},{60},{61},{62},{63},{64},{65},{66},{67}, \

{68},{69},{70},{71},{72},{73},{74},{75},{76},{77},{78},{79},{80},{81},{82}, \
{83},{84},{85},{86},{87},{88},{89},{90},{91},{92},{93},{94},{95},{96},{97}, \
{98},{99},{100},{101},{102},{103},{104},{105},{106},{107},{108},{109},{110}, \
{111}"

hwloc-bind core:56-111.pu:0 --membind numa:8 numa:10 numa:12 numa:14 --strict \
$DYABLO_EXE $DYABLO_ARGS

On top of such binding tools, hwloc comes with tools to observe and verify the actual bindings
(hwloc-ps, or lstopo as illustrated by Figure 58). Usual htop or other tools can also be used to double
check. Using such tools, we could confirm that this binding methodology leads to similar behavior
when using different MPI implementations and on all the systems described earlier.

Distribution Schemes Using the binding methodology described above, we could easily explore
the various process and thread distribution schemes. We defined three distribution schemes:

• CCD (L3): one process is started per group of cores attached to the same L3 cache, then one
thread per core within each CCD. This distribution scheme is only available on the AMD EPYC
7763 system: the other systems share an L3 cache for a whole socket (Ampere Altra Q8030,
Intel Xeon 8358) or have no L3 caches (Fujitsu FX700).

• NUMA: one process is started per NUMA available on the machine, then one thread per core
within each NUMA.

• Socket: one process is started per socket available, then one thread per core within each
socket.

• Machine: one process is started for the whole machine, with one thread per core.

Also, please note that the Ampere Altra Q8030 has one NUMA domain only, and that both ARM
systems have one socket only. Consequently, the only distribution scheme available on Ampere is
the Machine one, hence the absence of exploration for this system.

The various configurations shown in Table 23 clearly show the distribution scheme has an impact on
dyablo’s performance of up to 15%. Moreover, and although the socket distribution scheme seems to
stand out, we can see that a different configuration (CPU and compiler) implies a different distribution
scheme to achieve best performance. This calls for extra caution when testing on RHEA.
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# CPU Compiler Distribution Dyablo Execution Time (s) vs worse (%)

1 AMD EPYC 7763 AOCC CCD (L3) 167.246
2 NUMA 167.389
3 Socket 158.502 -9.94 %
4 Machine 176.004 ←
5 GCC CCD (L3) 150.879 ←
6 NUMA 148.486
7 Socket 134.780 -10.67 %
8 Machine 142.685
9 Intel CCD (L3) 212.225

10 NUMA 215.604
11 Socket 207.600 -8.67 %
12 Machine 227.301 ←
13 Fujitsu FX700 ACFL NUMA 957.426 ←
14 Machine 926.034 -3.28 %
15 GCC NUMA 1222.24 -1.75 %
16 Machine 1244.07 ←
17 Intel Xeon 8358 AOCC NUMA 258.844 ←
18 Socket 224.028 -13.47 %
19 Machine 241.839
20 GCC NUMA 238.999 ←
21 Socket 203.496 -14.85 %
22 Machine 213.866
23 Intel NUMA 341.684 ←
24 Socket 306.050 -10.43 %
25 Machine 316.560

Table 23: Dyablo runtime for the shorter test case, depending on the distribution scheme. The arrow
points to the worse execution time, against which the performance gain is calculated.

Starting one process per core is not supported by dyablo on all the configurations: the domain decom-
position for the test case supports up to 64 processes. Although supported on some systems (Fujitsu
with 48 cores, or Intel Xeon 8358 with 2x32 cores), some experiments have shown performance
degradation compared to the other distribution schemes.

HBM Impact In order to fairly compare the impact of using HBM versus DDR5, we targeted a
dedicated system: Intel Xeon Max 9480 (Sapphire Rapids with on-package HBM): a bi-socket system
with 56 cores per socket, 512GB of DDR5, 64GB of HBM2e per socket, with x86_64 instruction set
along with AVX2 and AVX512 vector extensions.

Using the same binding methodology described above, we can fine tune the memory binding of an
application. The Intel Xeon Max 9480 offers several configurations to access its HBM, summarized
on Figure 59 (source: Intel11). We used the SNC4 configuration, with the flat HBM setting.

Using this configuration, we can address every core group and memory bank independently. We
validated the approach by running the stream benchmark on both the DDR5 and HBM, reproducing
results from the literature [56]. Binding to the HBM instead of the DDR5 brings around 3× performance
gain to the stream benchmark.

11https://www.intel.com/content/www/us/en/content-details/769060/intel-xeon-cpu-max-series-configuration-and-tuning-guide.
html
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Figure 59: Illustration of the different configurations for the Intel Xeon Max 9480

We describe here two memory allocation schemes, as we did for the distribution schemes above:

• HBM: allocate everything in the HBM associated to the compute resources where the processes
are bound.

• DDR5: allocate everything in the DDR5 associated to the compute resources where the
processes are bound.

Again, and following the same binding methodology as earlier, hwloc provides the necessary tools to
calculate the logical NUMA identifiers that are close to a given compute resource and to generate the
proper binding command.

Running dyablo on the whole machine when binding to either the HBM or the DDR5 produced the
results presented in Table 24. Dyablo benefits from HBM, but the gains are not that significant
compared to the bandwidth increase offered by this new memory technology. Some distributions
schemes even bring performance degradation when allocating to the HBM. We can also note that the
socket distribution scheme leads to the best performance on the Intel Xeon 9480.

3.2.3 Conclusion

The early experiments have triggered some bug reports to upstream tools and dependencies (Kokkos,
CMake, hwloc). Thanks to our work and reporting, some fixes are now or will be available in
later versions. Especially, hwloc already features improvements in the handling of heterogeneous
memories 12. Additionally, the first performance results we could observe showed similar machine
efficiency on all the systems we have on hand. This allows us to conclude that dyablo is ready for
ARM, regarding both the software stack support and performance wise.

However, the experiments raised few questions. Indeed, the HBM gains are weak and should
investigated. Moreover, the flag study showed that forcing vectorization could bring performance

12https://raw.githubusercontent.com/open-mpi/hwloc/v2.10/NEWS
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# CPU Compiler Distribution Memory Dyablo Execution Time (s) vs DDR5 (%)

1 Intel Xeon 9480 AOCC NUMA DDR5 219.088
2 HBM 203.324 -7.20 %
3 Socket DDR5 185.979
4 HBM 174.022 -6.43 %
5 Machine DDR5 203.079
6 HBM 208.382 2.61 %
7 GCC NUMA DDR5 197.795
8 HBM 181.472 -8.25 %
9 Socket DDR5 163.588

10 HBM 153.025 -6.46 %
11 Machine DDR5 177.604
12 HBM 203.866 14.79 %
13 Intel NUMA DDR5 276.754
14 HBM 261.302 -5.58 %
15 Socket DDR5 242.985
16 HBM 230.104 -5.30 %
17 Machine DDR5 258.818
18 HBM 287.721 11.17 %

Table 24: Dyablo runtime for the shorter test case, depending on the memory allocation scheme, on
the Intel Xeon Max 9480 system.

degradation, especially with the best-in-class compiler for such vectorization optimizations as the
Intel one. This could indicate that the vector instructions are properly generated by the compilers, but
that vectors are not fully populated during execution. This could denote low arithmetic intensity, or
simply control bound algorithms. Properly filling the vectors would lead to not only higher arithmetic
intensity, but also higher memory pressure. Optimizing in such a way would benefit both vectorization
and HBM exploitation. The next step will be to investigate these aspects.

Finally, we could test and validate a binding methodology based on hwloc tools used in EUPEX.
Having this tool ported to RHEA, as planned in WP5, will ensure the approach we developed will be
suitable for the EUPEX pilot system.
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4 Summary

This document has presented the work undertaken to optimise the EUPEX application code for the
use of SVE and HBM, on the Fujitsu A64FX early software development vehicle hosted by the CEA.
It also includes an iteration of progress on the work done on GPUs, from months 1-24 as part of
deliverable D3.1 [10] - which demonstrates the portability of GPU kernels. Performance assessments
of the different applications have also been documented. A particular focus has been placed in the
document on focused on concerns regarding portability, scalability, and accuracy.

The different porting approaches described in the introduction have been covered by the EUPEX pilot
applications.

The use of platform-optimised libraries is critical on any HPC platform, and the SVE-enabled A64FX
platform is no exception. Work undertaken in particular by the ESPRESO developers found the Fujitsu
BLAS library to be up to eighteen times faster than other BLAS implementations on the platform. The
IFS application also observed the crucial performance implications of platform-optimised BLAS and
FFTW libraries.

The importance of the compiler has been highlighted by a number of applications, regarding the
ability to make efficient use of the SVE instruction set. The OpenGADGET application developers
performed a detailed study of this question, finding the GNU compiler to vectorise significantly less
well than the Fujitsu compiler, leading to a 30% performance deficit for the GNU compiler.

In a majority of applications, code modifications were needed to make effective use of SVE. Exposing
SIMD characteristics at the algorithmic implementation level was found to be highly beneficial. Manual
use of SVE intrinsics was also investigated by certain applications, with varying degrees of benefit.
While for the IFS-CloudSC kernel, manual vectorisation was not found to yield better results than
compiler-vectorised code, the ability to use C-language intrinsics in Fortran code was established.
On the other hand work carried out on the Bolt65 mini-app highlighted that there are situations
where manual SVE usage results in significantly improved performance as compared relying on
auto-vectorisation. Possibly due to a lack of compiler auto-vectorisation, as seen by ESPRESO.

The detailed investigation into SVE undertaken in this deliverable is key to making efficient use of the
upcoming EPI CPU. Nevertheless, vendor-specific, and therefore non-portable, approaches have had
to be deployed.
The work undertaken by BigDFT developers to re-implement GPU kernels in SYCL has demonstrated
a highly promising approach to achieve platform and performance portability - even if it was not
possible to use an ARM based platform at this stage.
Cybeletech also demonstrated the use of containerisation as an approach to portability. Allowing
them to deploy code with minimal effort as it had already been compiled and included necessary
dependencies. They were able to do this with minimal memory overhead from the virtualisation layer,
making maximum use of the limited HBM available.

Some of the EUPEX pilot applications have also demonstrated the effects of High Bandwidth Memory
on application runtime. For large, heterogeneous applications such as the IFS, overall performance
may benefit significantly, even if some application components (the CloudSC kernel, in the case of
the IFS) do not see a substantial performance boost. The use of Intel hardware was crucial for this
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point, as the HBM-equipped Xeon Max systems are the only platforms on which performance can be
fairly compared with and without HBM.

This document concludes the reporting on the second phase of WP3, which is focused on the
architecture-specific features of the EUPEX hardware. The next phase of the project will aim
to broaden the optimisation focus out to the workflow level in heterogeneous and modular HPC
architectures.
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List of Acronyms and Abbreviations

C
CMG Core Memory Group

CPU Central Processing Unit

CUDA The Compute Unified Device Architecture is a parallel computing plat-
form as well as an API that allows for the communication with certain
types of graphics-processing units

CEA French Alternative Energies and Atomic Energy Commission, France

E
EC European Commission

EU European Union

Exascale Computer systems or Applications, which are able to run with a perfor-
mance above 1018 Floating point operations per second

ECMWF European Centre for Medium-range Weather Forecasts, headquartered
in Reading, UK

F
FFT Fast Fourier Transform

FLOP/s FLoating-point OPeration per Second

G
GPU Graphics Processing Unit

H
H2020 Horizon 2020

HBM High Bandwidth Memory, see 1.3

HEVC High Efficiency Video Coding

HPC High Performance Computing
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HPCG The High Performance Conjugate Gradient benchmark is a benchmark
based on a conjugate-gradient kernel

HPL The High Performance LINPACK (HPL) is a performant software pack-
age for solving linear system.

I
IB verbs The API for communication using InfiniBand (IB), a communication

hardware

IFS Integrated Forecasting System

I/O Input/Output. May describe the respective logical function of a com-
puter system or a certain physical instantiation

IPC Instructions Per Cycle

ISA Instruction Set Architecture

L
LINPACK LINPACK is a software package for solving linear systems

M
MPI Message Passing Interface, API specification typically used in parallel

programs that allows processes to communicate with one another by
sending and receiving messages

MPI-I/O MPI – Input/Output is an extentsion to MPI for I/O

MPMD Multiple-Program-Multiple-Data

MSA Modular Supercomputer Architecture

ML Machine Learning

MKL The Math Kernel Library is a mathematics library provided by Intel®

N
NUMA Non-Uniform Memory Access

NVLink NVLink describes the suite of tools for communicating between NVIDIA
GPUs. It includes an API that requires physical NVLink bridges be-
tween GPUs to use
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O
OpenMP Open Multi-Processing, Application programming interface that support

multi-platform shared memory multiprocessing

R
RAM Random-Access Memory

S
SIMD Single Instruction Multiple Data

SVE Scalable Vector Extension : see 1.2

SW Software

T
TCP The Transmission Control Protocol (TCP) is one of the main communi-

cation protocols of the internet protocol

U
UCP The Unified Communication Protocol (UCP) is an API aimed at unifying

different communication APIs, similar in that sense to MPI

W
WP Work package

WAM WAve Model, used in IFS forecasts to predict the ocean-atmosphere
interface

X
x86 Family of instruction set architectures based on the Intel® 8086 CPU
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5 Appendix

5.1 Appendix: IFS

5.1.1 A handwritten SVE intrinsics kernel for the hottest loop in CloudSC

1 #include <stdint.h>
2 #include <stdbool.h>
3
4 #ifdef __ARM_FEATURE_SVE
5 #include <arm_sve.h>
6 #endif /* __ARM_FEATURE_SVE */
7
8 #define MAX(x, y) (((x) > (y)) ? (x) : (y))
9

10 void hot_loop_(const int32_t JK, const int32_t KIDIA, const int32_t KFDIA, const
int32_t KLEV, const int32_t KLON, const int32_t NCLV, const float ZEPSEC,
int32_t LLINDEX3[KLON][NCLV][NCLV], float ZSOLQA[KLON][NCLV][NCLV], float
ZSINKSUM[KLON][NCLV], float ZQX[KLON][KLEV][NCLV], float ZRATIO[KLON][NCLV]) {

11 #ifdef __ARM_FEATURE_SVE
12 svint32_t ones_vec = svdup_n_s32(1);
13 uint32_t lane_width = svcntw();
14 svbool_t all_32 = svptrue_b32();
15 svbool_t pg;
16
17 #endif
18 for (int32_t JM = 0; JM < NCLV; ++JM) {
19 for (int32_t JO = 0; JO < NCLV; ++JO) {
20 #ifndef __ARM_FEATURE_SVE
21 for (int32_t JL = KIDIA - 1; JL < KFDIA; ++JL) {
22 LLINDEX3[JM][JO][JL] = ZSOLQA[JM][JO][JL] < 0.0;
23 ZSINKSUM[JM][JL] = ZSINKSUM[JM][JL] - ZSOLQA[JL][JO][JL];
24 }
25 #else
26 for (uint32_t JL = KIDIA - 1; svptest_first(all_32,

pg=svwhilelt_b32(JL, KFDIA)); JL += lane_width)
27 {
28 svfloat32_t ZSOLQA_vec = svld1(pg, &ZSOLQA[JM][JO][JL]);
29 svfloat32_t ZSINKSUM_vec = svld1(pg, &ZSINKSUM[JM][JL]);
30
31 svbool_t pg2 = svaclt_n_f32(pg, ZSOLQA_vec, 0.f);
32 svst1(pg2, &LLINDEX3[JM][JO][JL], ones_vec);
33 svst1_f32(pg, &ZSINKSUM[JM][JL], svsub_f32_x(pg, ZSINKSUM_vec,

ZSOLQA_vec));
34 }
35 #endif
36 }
37
38 // !---------------------------
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39 // ! recalculate scaling factor
40 // !---------------------------
41 #ifndef __ARM_FEATURE_SVE
42 for (int32_t JL = KIDIA - 1; JL < KFDIA; ++JL) {
43 float ZMM = MAX(ZQX[JM][JK][JL], ZEPSEC);
44 float ZRR = MAX(ZSINKSUM[JM][JL], ZMM);
45 ZRATIO[JM][JL] = ZMM / ZRR;
46 }
47 #else
48 svfloat32_t ZEPSEC_vec = svdup_n_f32(ZEPSEC);
49
50 for (uint32_t JL = KIDIA - 1; svptest_first(all_32, pg=svwhilelt_b32(JL,

KFDIA)); JL += lane_width)
51 {
52 svfloat32_t ZQX_vec = svld1(pg, &ZQX[JM][JK][JL]);
53 svfloat32_t ZSINKSUM_vec = svld1(pg, &ZSINKSUM[JM][JL]);
54
55 svfloat32_t ZMM_vec = svmax_f32_x(pg, ZQX_vec, ZEPSEC_vec);
56 svfloat32_t ZRR_vec = svmax_f32_x(pg, ZSINKSUM_vec, ZMM_vec);
57
58 svst1_f32(pg, &ZRATIO[JM][JL], svdiv_f32_x(pg, ZMM_vec, ZRR_vec));
59 }
60 #endif
61
62 // !------
63 // ! scale
64 // !------
65 for (int32_t JO = 0; JO < NCLV; ++JO) {
66 #ifndef __ARM_FEATURE_SVE
67 for (int32_t JL = KIDIA - 1; JL < KFDIA; ++JL) {
68 if (LLINDEX3[JM][JO][JL]) {
69 ZSOLQA[JM][JO][JL] = ZSOLQA[JM][JO][JL] * ZRATIO[JO][JL];
70 ZSOLQA[JO][JM][JL] = ZSOLQA[JO][JM][JL] * ZRATIO[JO][JL];
71 }
72 }
73 #else
74 for (uint32_t JL = KIDIA - 1; svptest_first(all_32,

pg=svwhilelt_b32(JL, KFDIA)); JL += lane_width)
75 {
76 svint32_t LLINDEX3_vec = svld1(pg, &LLINDEX3[JM][JO][JL]);
77
78 svbool_t pg2 = svcmpeq_n_s32(pg, LLINDEX3_vec, 1);
79
80 svfloat32_t ZSOLQA_vec = svld1(pg2, &ZSOLQA[JM][JO][JL]);
81 svfloat32_t ZRATIO_vec = svld1(pg2, &ZRATIO[JO][JL]);
82 svfloat32_t ZSOLQA_flipped_vec = svld1(pg2, &ZSOLQA[JO][JM][JL]);
83
84
85 svst1_f32(pg2, &ZSOLQA[JM][JO][JL], svmul_f32_x(pg2, ZSOLQA_vec,

ZRATIO_vec));
86 svst1_f32(pg2, &ZSOLQA[JO][JM][JL], svmul_f32_x(pg2,

ZSOLQA_flipped_vec, ZRATIO_vec));

EUPEX - 101033975 122 31.12.2023



D3.2 Applications optimised for SVE and HBM

87
88 }
89 #endif
90 }
91 }
92 }
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