
xmap: Transparent, Hugepage-Driven Heap Extension
over Fast Storage Devices

Ioannis Malliotakis
ICS-FORTH & University of Crete

Heraklion, Greece

jmal@ics.forth.gr

Anastasios Papagiannis
Isovalent

Athens, Greece

anastasios.papagiannis@isovalent.com

Manolis Marazakis
ICS-FORTH

Heraklion, Greece

maraz@ics.forth.gr

Angelos Bilas
ICS-FORTH & University of Crete

Heraklion, Greece

bilas@ics.forth.gr

Abstract

Increasing dataset sizes requires that applications use larger

heaps. Two characteristic examples are graph analytics and

machine learning (ML), both emergingworkloadswith rapidly

increasing memory demands. With recent technology lim-

itations in DRAM scaling, one important question is how

to grow the heap further. One approach is the use of spe-

cialized out-of-core frameworks which can process datasets

larger than the available DRAM capacity. However, devel-

oping and tuning such frameworks for performance is both

complex and time-consuming, and frameworks for graph an-

alytics and ML have traditionally been in-memory. Another

approach for extending the application heap transparently to

applications is fast, block-addressable storage devices, such

as NVMe SSDs, over the OS memory mapped I/O (mmio) or

swapper (swap) path. These paths allow the extension of the

application heap without application modi�cations through

the abstraction of the process virtual address space.

Although both mmio and swap are part of the core kernel

operation, they have signi�cant limitations for use with ap-

plication heaps. First, they fail to scale beyond 8 cores due

to shared structure contention in OS paths stressed during

heap extension, namely the page fault, page reclamation and

page writeback paths. Second, they do not o�er read-write

support for hugepages over block storage. Hugepages are

contiguous memory frames larger than the regular page size

(e.g., 2MB or 1GB on x86_64), which can be mapped with

a single TLB and (huge) page table entry. Hugepages have

received increased attention in in-memory setups for their

potential to reduce CPU cycles spent on TLB misses, and

reduce page faults, thus reducing kernel processing software

overheads. Applying hugepages to heap extension can aid in

harnessing the increasing throughput capabilities of NVMe

SSDs. Third, they o�er limited asynchronous operations,

which are important to mask the higher latency of the back-

ing storage medium, namely aggressive readahead, which is

ill-�tted for heap extension, where memory must be treated

as a scarce resource.

Driven by these limitations, we design xmap as an alterna-

tive mmio path for the Linux kernel, tailored towards heap

extension over fast block storage devices. xmap provides im-

proved scalability, support for transparent hugepages over

block-based storage, and asynchronous hugepage promo-

tions. To our knowledge, xmap is the �rst system that pro-

vides this support for the Linux kernel. xmap is implemented

as a kernel module, requiring no kernel modi�cations. It

utilizes its own preallocated and statically divided regular

and hugepage pools, to operate under a strict DRAM budget

and prevent external memory fragmentation due to the use

of hugepages. It organizes pages in its own sharded page

cache and metadata structures, to mitigate shared structure

contention and improve scalability. xmap utilizes hugepages

either via explicit application demand (i.e.,madvise) or trans-

parently in a policy-driven manner. xmap supports both

the synchronous preparation and mapping of hugepages

to the application address space at page fault time, and

the asynchronous promotion of hugepage-sized virtual ad-

dress ranges from mapping to regular pages to mapping to a

hugepage.

We �rst examine the performance implications of extend-

ing the application heap over NVMe SSDs, by characteriz-

ing the application-perceived memory access latency and

throughput through LMbench workloads. We then evalu-

ate xmap with a random page fault microbenchmark, a ma-

chine learning workload (LIBLINEAR), and graph processing

frameworks (Ligra+, GridGraph), by transparently extending

their heap over storage without any code modi�cations. We

�nd that xmap scales beyond 8 cores, increasing random page

fault throughput by up to 3.9× compared to Linux mmap.

When using a heap/DRAM ratio of 2×, xmap improves linear

regression training time by up to 7.9× compared to Linux

mmap. xmap allows an in-memory graph processing frame-

work (Ligra+) to perform comparably to or even better than

a hand-written out-of-memory graph processing framework

(GridGraph) when processing graphs 4×-8× larger than the

available DRAM, without any code modi�cations.

1



Conference’17, July 2017, Washington, DC, USA Ioannis Malliotakis, Anastasios Papagiannis, Manolis Marazakis, and Angelos Bilas

Acknowledgments

We thankfully acknowledge the support of the European

High-Performance Computing Joint Undertaking (EuroHPC

JU) under project EUPEX (grant agreement No 101033975).

The EuroHPC JU receives support from the EuropeanUnion’s

Horizon 2020 research and innovation programme and France,

Germany, Italy, Greece, United Kingdom, Czech Republic,

Croatia.

2


	Abstract
	Acknowledgments

