

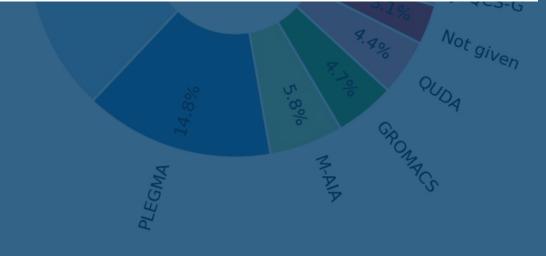
JUPITER

Paving the way for Application-centered Exascale Supercomputing in Europe

2024-10-10 I EUPEX FORUM

Bundesministerium für Bildung und Forschung

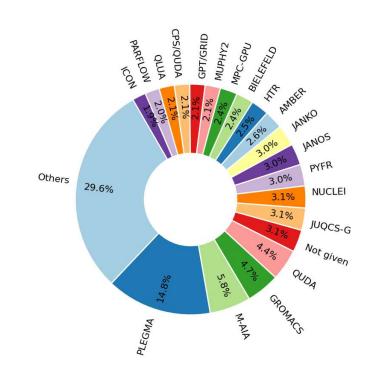
Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen



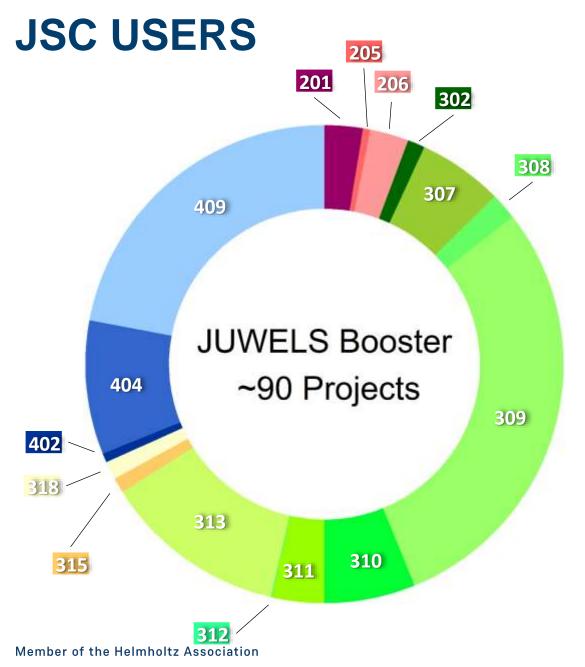
Member of the Helmholtz Association

APPLICATIONS

Member of the Helmholtz Association


ASSESSING WITH APPLICATIONS

- Theoretical FLOP/s and GB/s are nice; but building machines for <u>users</u>
- → Applications core of procurement assessment
- Define representative benchmarks, *ExaBench*
 - 1. Analyze JSC workload
 - 2. Select fitting applications
 - 3. Benchmarkize them
 - 4. Submit as part of specification
 - \$ Get best machine


JSC WORKLOAD

- Application Support: Look at proposals, Slurm, ...
- Very heterogeneous
- GPU mainly, but also
 - MIC (because good GPU candidates)
 - CPU (because might make change)

GPU Top 20 software 2021 (core-h)

Reseach Fields

- 201 Basic Biological and Medical Research
- 205 Medicine
- 206 Neurosciences
- 302 Chemical Solid State and Surface Research
- 307 Condensed Matter Physics
- 308 Optics, Quantum Optics and Physics of Atoms, Molecules and Plasmas
- 309 Particles, Nuclei and Fields
- 310 Statistical Physics, Soft Matter, Biological Physics, Nonlinear Dynamics
- 311 Astrophysics and Astronomy
- 312 Mathematics
- 313 Atmospheric Science, Oceanography and Climate Research
- 315 Geophysics and Geodesy
- 318 Water Research
- 402 Mechanics and Constructive Mechanical Engineering
- 404 Heat Energy Technology, Thermal Machines, Fluid Mechanics
- 409 Computer Science

→ Define Benchmarks

APPLICATION SELECTION

- Selection criteria
 - Current workload
 - Future workload
 - Relevance
 - Balance with other applications
 - Domains
 - Programming models
 - Programming languages
 - Profile
 - Available Pl/researcher

- Amber
- Arbor
- Chroma
- GROMACS
- ICON
- JUQCS
- nekRS
- ParFlow
- PIConGPU

- QuantumEspresso
- SOMA
- MMoCLIP
- NLP (Megatron)
- ResNet
- DynQCD
- NAStJA

FURTHER BENCHMARKS

- Augment application (complex) benchmarks with synthetic (simpler) benchmarks
- Application benchmarks: Test complex interplay of usage by real-world applications
- Synthetic benchmark: Test specific feature of system design
- OSU microbenchmarks (network/MPI)
 STREAM CPU, GPU (Memory)
 Graph500

(network)

network)

• HPCG (memory,

- HPL (compute, network)
- IOR (storage)
- Linktest (network/MPI)

BENCHMARKIZATION

b entjmailkiz'eijen, creating benchmarks of mere applications

- Goal: Version of application for vendors, for which we get (best) result back
- Implications: recipe, rules, verification pre-defined; only small corrections
- Steps
 - Define workload, metric (unit of time)
 - Create JUBE script for reproducibility, uniformity, abstraction
 - Add verification of results
 - Benchmark benchmark: Run, debug, scale
 - Add documentation, rules

SUB-BENCHMARKS, VARIANTS

- Type of benchmarks
 - Applications benchmarks
 - Synthetic benchmarks
- Execution targets
 - JUPITER Booster (GPU, CPU)
 - JUPITER Cluster (CPU)
 - MSA
- Application benchmark categories
 - TCO
 - High-Scaling

	Booster			Cluster	MSA
Name	GPU	GPU High-Scale	CPU	CPU	
Amber	\checkmark				
Arbor	\checkmark	\checkmark			
Chroma	\checkmark	\checkmark			
Gromacs	\checkmark				
ICON	\checkmark				
JUQCS	\checkmark	\checkmark			\checkmark
nekRS	\checkmark	\checkmark			
ParFlow	\checkmark				
PIConGPU	\checkmark	\checkmark			
Quantum ESPRESSO	\checkmark				
SOMA	\checkmark				
AI-MMoCLIP	\checkmark				
AI-NLP	\checkmark				
AI-ResNet	\checkmark				
dynQCD				\checkmark	
NAStJA				\checkmark	
Graph500			\checkmark		
HPCG	\checkmark			\checkmark	
HPL	\checkmark			\checkmark	
IOR			\checkmark	\checkmark	
LinkTest			\checkmark	\checkmark	\checkmark
Multi-Flow IP			\checkmark		
OSU	\checkmark		\checkmark	\checkmark	
STREAM	\checkmark			\checkmark	

Total Cost of Ownership

- Traditional benchmark category
- How much of benchmark suite can be run in lifetime of system? Also: energy
- Key: same metric for each benchmark
 - Unit: time / s
 - Needed to convert rate \rightarrow time
- One reference run for formula (e.g. 8 nodes); additional strong-scaled runs (e.g. 4, 16)
- Weights per individual benchmark
- Sophisticated formula for Cluster-Booster combination

HIGH-SCALING

- Give benchmarks a focus on large-scaleness of system
- Compare execution on full* JUWELS Booster to full* JUPITER Booster
 - *: Use 50 PFLOP/sth. peak part of JUWELS Booster

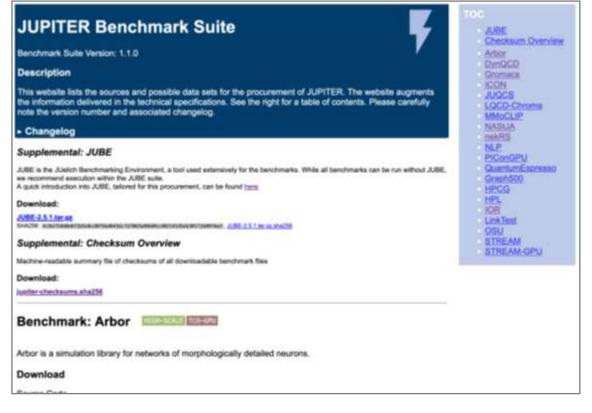
→ compare to 1000 PFLOP/s^{th. peak} part of JUPITER Booster

- AKA 20×50 PF category
- New challenge for us (yay!)
 - Design for unknown system, unknown device, unknown memory size Introduce 3 memory variants: small (²/₄), medium (³/₄), high (⁴/₄ JWB A100 memory)
 - Hard to test on scale at JUWELS Booster
 - No way to test on scale required for JUPITER
 - Code issues at scale

• Arbor

tiny (1/4), small, medium, large

- Chroma
 small, medium, large
- JUQCS small, large
- nekRS small, medium, large
- PIConGPU small, medium, large


FINAL BENCHMARK LISTS

			Booster		Cluster	MSA
Before Dialogue	After Dialogue	GPU	GPU High-Scale	CPU	CPU	
Amber	Amber	\checkmark				
Arbor	Arbor	\checkmark	\checkmark			
Chroma	Chroma	\checkmark	\checkmark			
Gromacs	Gromacs (2)	\checkmark				
ICON	ICON (2)	\checkmark				
JUQCS	JUQCS	\checkmark	\checkmark			\checkmark
nekRS	nekRS	\checkmark	\checkmark			
ParFlow	ParFlow	\checkmark				
PIConGPU	PIConGPU	\checkmark	\checkmark			
Quantum ESPRESSO	Quantum ESPRESSO	\checkmark				
SOMA	SOMA	4				
AI-MMoCLIP	AI-MMoCLIP	\checkmark				
AI-NLP	AI-NLP	\checkmark				
AI-ResNet	Al-Resnet	4				
dynQCD	dynQCD				\checkmark	
NAStJA	NAStJA				\checkmark	
Graph500	Graph500			\checkmark		
HPCG	HPCG	\checkmark			\checkmark	
HPL	HPL	\checkmark			\checkmark	
IOR	IOR			\checkmark	\checkmark	
LinkTest	LinkTest			\checkmark	\checkmark	\checkmark
Multi-Flow IP	Multi-Flow IP			4		
OSU	OSU (2)	\checkmark		\checkmark	\checkmark	
STREAM	STREAM	\checkmark			\checkmark	

SUBMITTED FILE, WEBSITE

Rolling release of benchmark (as-early-aspossible) via website; with hashes

Reference description, list of hashes, in attachment of Technical Specification

12. Appendix D

This appendix is generated from the individual descriptions of the benchmarks. The page numbers listed at the bottom of the pages refer to the location within the appendix, starting at 1 on this page. For overflowing listings in the following, please refer to the respective description of each benchmark included in each tarball as DESCRTPTION.md.

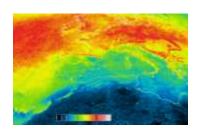
Table of Benchmarks

1	Arbor	2
2	DynQCD	6
3	GROMACS	8
4	ICON	12
5	JUQCS	16
6	LQCD Chroma	22
7	MMoCLIP	30
8	NASIJA	33
9	nekRS	37
10	NLP (Megatron)	42
11	PIConGPU	46
12	2 Quantum ESPRESSO	51
13	Graph500	54
- 14	HPCG	57
15	5 HPL	63
16	6 IOR	65
17	/ LinkTest	69
-18	S OSU MPI Micro-Benchmarks	74
19	STREAM	77
20) STREAM GPU	80
ц	ach Overview	

Hash Overview

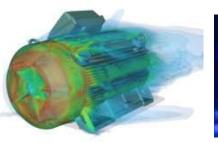
The following table is an overview of benchmark name, the according archive, and the SHA256 hash of the archive. Only benchmarks fixed to this hash can be used.

JUBE	JUBE-2.5.1.tar.gz	4c9a754b8e6f2b5e8cd8f5bd643dcfd7863a96b85cd82141d5eb381f2b89f6a3
Arbor	arbor-bench.tar.gz	fa1b1af09ba4bbcfdacbf906c7f81d6b8e43e45a34ad6f70f4280c6268e1072e
DynQCD	dynqcd-bench.tar.gz	7dc0dbd549e795c1f1a3ab42a76fe92e9cab3ff8821f1d6d1fca581de4af0b33


Member of the Helmholtz Association

SUBMITTED FILE, WEBSITE

Rolling release of benchmark (as-early-as- possible) via website; with hashes	Reference description, list of hashes, in attachment of Technical Specification
JUPITER Bench Result of this endeavour is a public Supercomputing Conference '24 to	This appoint is generated from the individual descriptions of the benchmarks. The page numbers
Changelog Supplemental: JUBE Alter in the Alter interval of the Vertice the Alter interval of the	e JUPITER Benchmark Suite
Download: Mittps://arxiv.org/abs/2408.17211 Supplemental: Checksum 0 Mathree-readable summery file of checks Download: ivefile: checksum ahal36	12 Quantum ESPRESSO 51 13 Graph500 54 14 HPCG 57 15 HPL 63 16 IOR 65 17 LinkTest 69 18 OSU MPI Micro-Benchmarks 74 19 STREAM 77 20 STREAM GPU 80
Benchmark: Arbor Construction C	Hash Overview The following table is an overview of benchmark name, the according archive, and the SHA256 hash of the archive. Only benchmarks fixed to this hash can be used. JUBE JUBE-2.5.1.tar.gz Abor arbor-bench.tar.gz 4c9a754bee615be640f5bd643dcff78633e605cd02141d5eb3017b89f6a3 to 15bd643dcf778f32e6bc62f8e16726 to 15bd643dcf778f32e6bc43e45a43dcf778f428bc6268e1872e DynQCD dyngcd-bench.tar.gz 7dc6dbd549e785c1f1a3ab42a76fe92e9cab3ff8821f1d6d1fca581de4afeb33


HPC DEMONSTRATOR APPLICATIONS

Weather Forecasting IFS

AI4EO PyTorch DDP, HPDBSCAN

Engineering ESPRESO FEM

Biology and Health LIGEN

- > 8 HPC application demonstrators
 - Have been
 vectorised and
 optimized for ARM
 SVE + HBM
 - Are currently ported and optimized for Grace/Hopper

Precision Agriculture Forecast

Astrophysics Gadget

Seismology SPECFEM3D

Material Science for Biology BigDFT

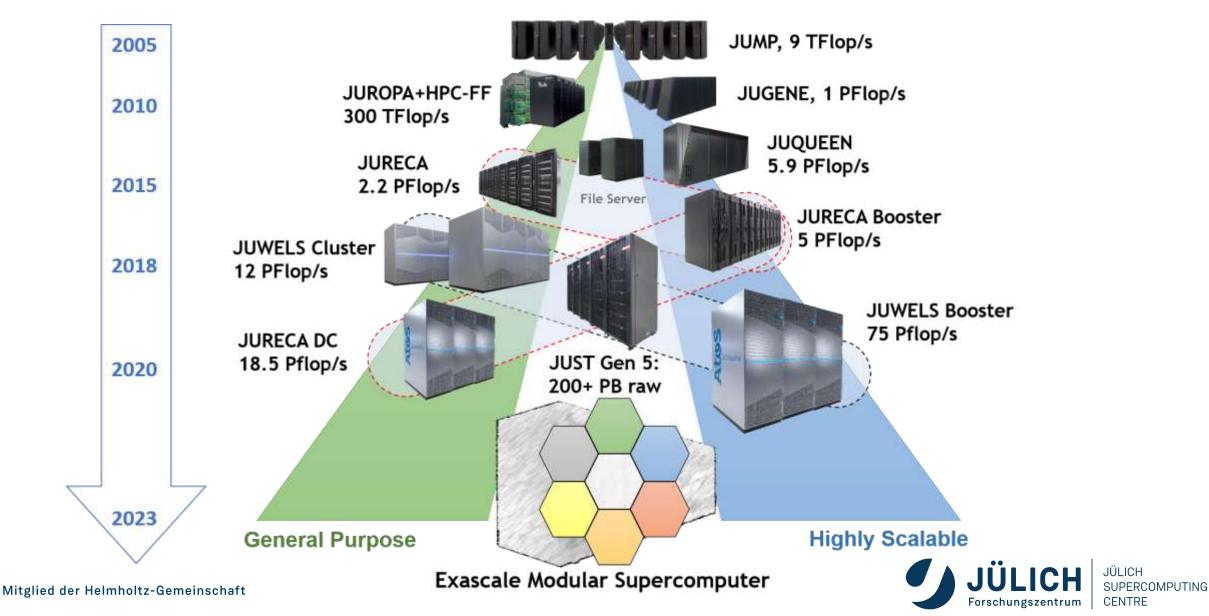
https://eupex.eu/applications/

HPC DEMONSTRATOR APPLICATIONS

JÜLICH Forschungszentrum

https://eupex.eu/applications/

Member of the Helmholtz Association


JUPITER ARCHITECTURE

Member of the Helmholtz Association

(DUAL) hardware strategy at JSC

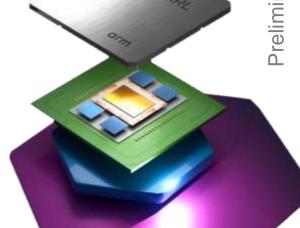
MODULAR SUPERCOMPUTING AT EXASCALE

DISCOVERING JUPITER

- ParTec/Eviden Supercomputer Consortium
- Implementing Modular Supercomputing Architecture
- JUPITER Booster: High scalability; 1 EFLOP/s HPL, >70 EFLOP/s FP8
- JUPITER Cluster: High versatility; 0.5 B/FLOP balance
- Network: 200/400 Gigabit NVIDIA Mellanox InfiniBand NDR
- Storage: 29 PB Flash IBM Storage Scale 6000
- 17 Megawatt Linpack Power Consumption
- Direct Liquid Cooled (36 -> 4x degree) to enable heat-reuse

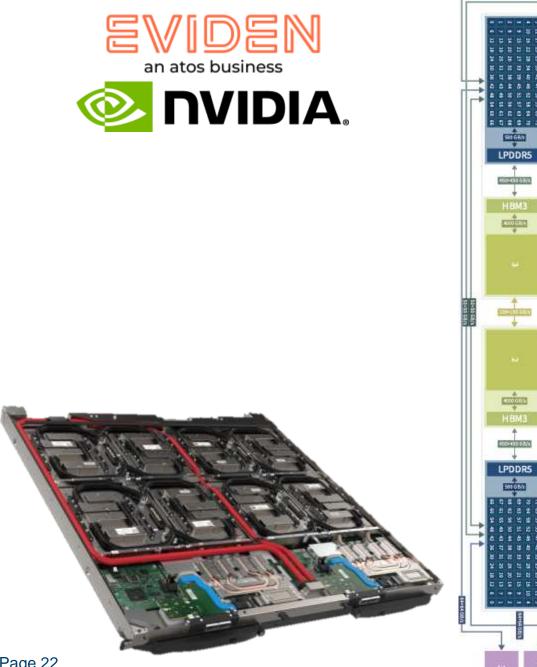
R (Sequana)

JUPITER MODULES


JUPITER Booster

- ~125 Racks BullSequana XH3000
- Node design
 - ~6000 nodes
 - 4× NVIDIA CG1 per node
- CG1: NVIDIA Grace-Hopper
 - 72 Arm Neoverse V2 cores (4×128b SVE2); 120 GB LPDDR5
 - H100 (132 SMs); 96 GB HBM3
 - NVLink C2C (900 GB/s)

JUPITER Cluster


- ~14 Racks BullSequana XH3000
- Node design
 - ~1300 nodes
 - 2× SiPearl Rhea1 per node
- Rhea1
 - 80 Arm Neoverse V1 cores (2×256b SVE)
 - 256 GB DDR5,
 64 GB HBM2e

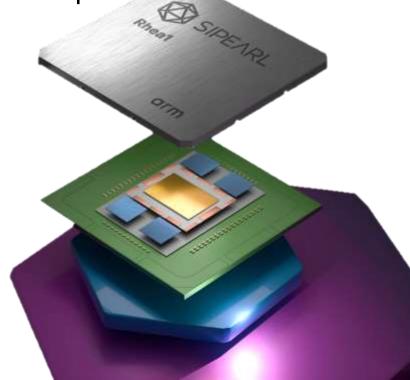
JUPITER – THE BOOSTER

Highly-Scalable Module for HPC and AI workloads

- 1 ExaFLOP/s (FP64, HPL)
- NVIDIA Grace-Hopper CG1
 - ~5900 compute nodes
 - 4x CG1 chips per compute node
- NVIDIA Mellanox NDR
 - 4× NDR200 NICs per compute node
- BullSequana XH3000
 - Direct Liquid Cooled blades
 - 2× compute node per blade

LPDDR

I PDDF


JUPITER – THE CLUSTER

General-Purpose Module for Mixed Workloads

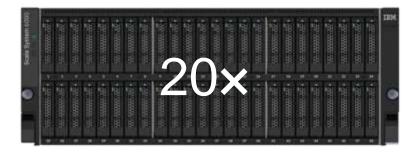
- >5 PetaFLOP/s (FP64, HPL)
- SiPearl Rhea1
 - ~1340 compute nodes
 - 2× CPUs per node
- NVIDIA Mellanox NDR
 - 1× NDR200 NICs per compute node
- BullSequana XH3000
 - Direct Liquid Cooled blades
 - 3× compute nodes per blade

- 80 Neoverse V1 cores
 - 2x 256 SVE each
- 64 GB HBM (128 GB per node)
- 256 GB DDR5 (512 GB per node)

JUPITER – LOGIN/VISUALIZATION

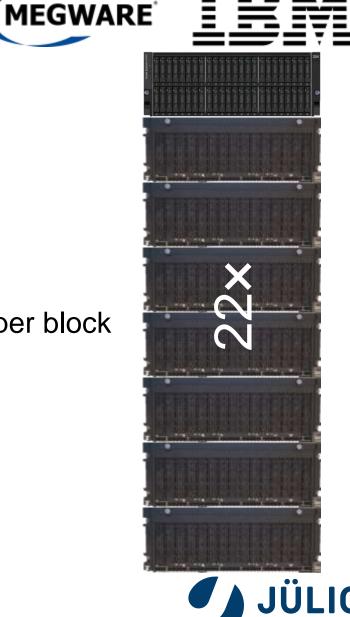
Login Partition and Visualization Capabilities

- Login Nodes
 - Booster: 12 nodes, 1* CG1
 - Cluster: 5 nodes, 2* Rhea1
- Visualization Nodes
 - Booster: 3 nodes, 1* CG1
 - Cluster: 3 nodes, 2* Rhea1 and 2* NVidia A40
- 2* 100Gbit Ethernet for external connectivity



JUPITER – STORAGE (SCRATCH)

- Gross Capacity: 29 PB; Net Capacity: 21 PB
- Bandwidth: 2.1 TB/s Write, 3.1 TB/s Read
- 20× IBM SSS6000 Building Blocks (40 servers)
 - 2× NDR400 per server
 - 48× 30 TB NVMe drives per block
 - IBM Storage Scale (aka Spectrum Scale/GPFS)
- Manager and Datamover Nodes
- Exclusive for JUPITER
 - Integrated into InfiniBand fabric



during installation might change

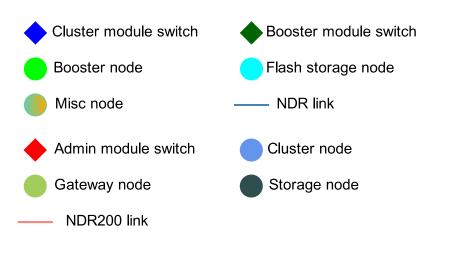
JUPITER – STORAGE (EXASTORE)

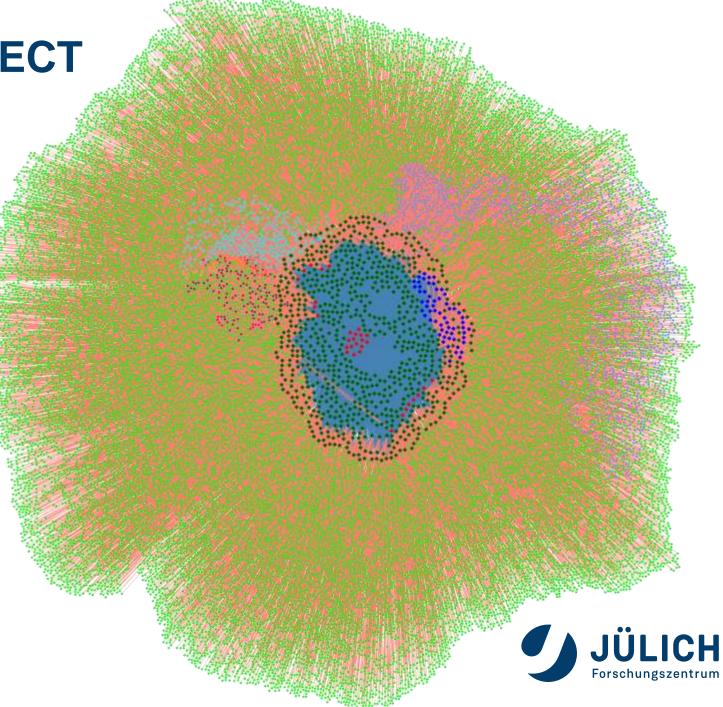
In kind contribution from JSC, not part of the JUPITER procurement

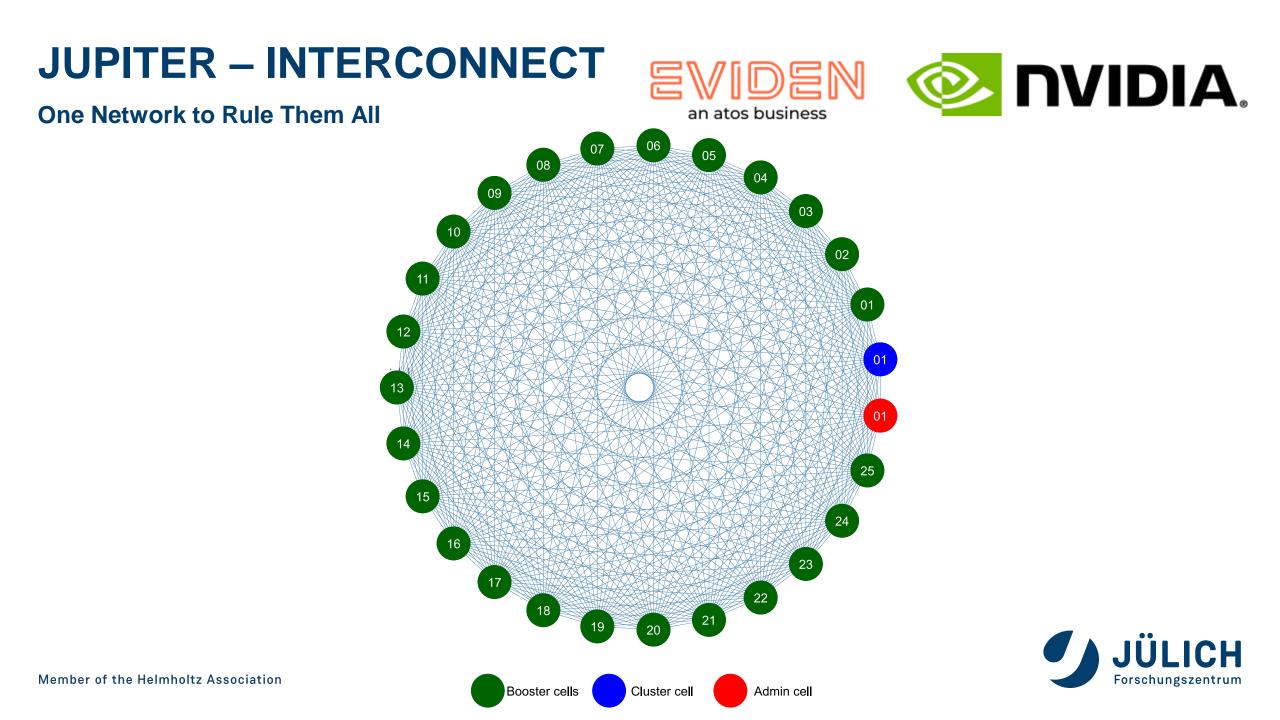
- Gross Capacity: 308 PB; Net Capacity: 210 PB
- Bandwidth: 1.1 TB/s Write, 1.4 TB/s Read
- 22× IBM SSS6000 Building Blocks (44 servers)
 - 2× NDR200 per server
 - 7× JBOD enclosures, each with 91x 22 TB Spinning Disks per block
 - IBM Storage Scale (aka Spectrum Scale/GPFS)
- Manager and Datamover Nodes
- Exclusive for JUPITER
 - Integrated into InfiniBand fabric

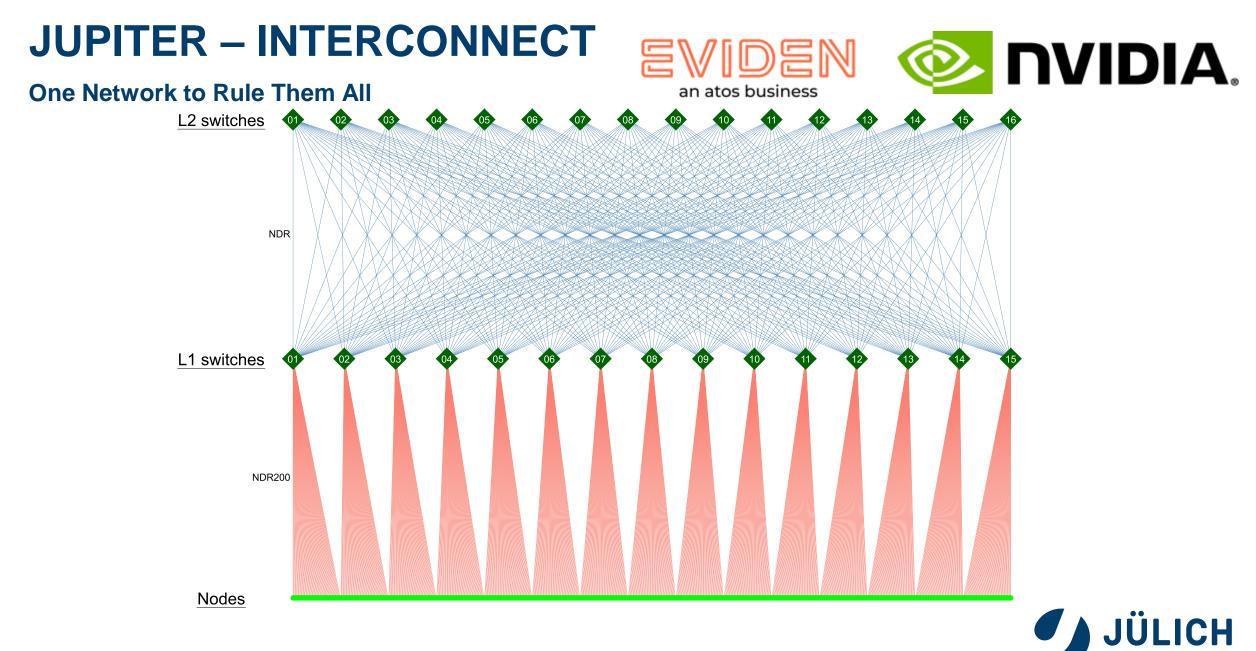
NETWORK DESIGN

JUPITER – INTERCONNECT

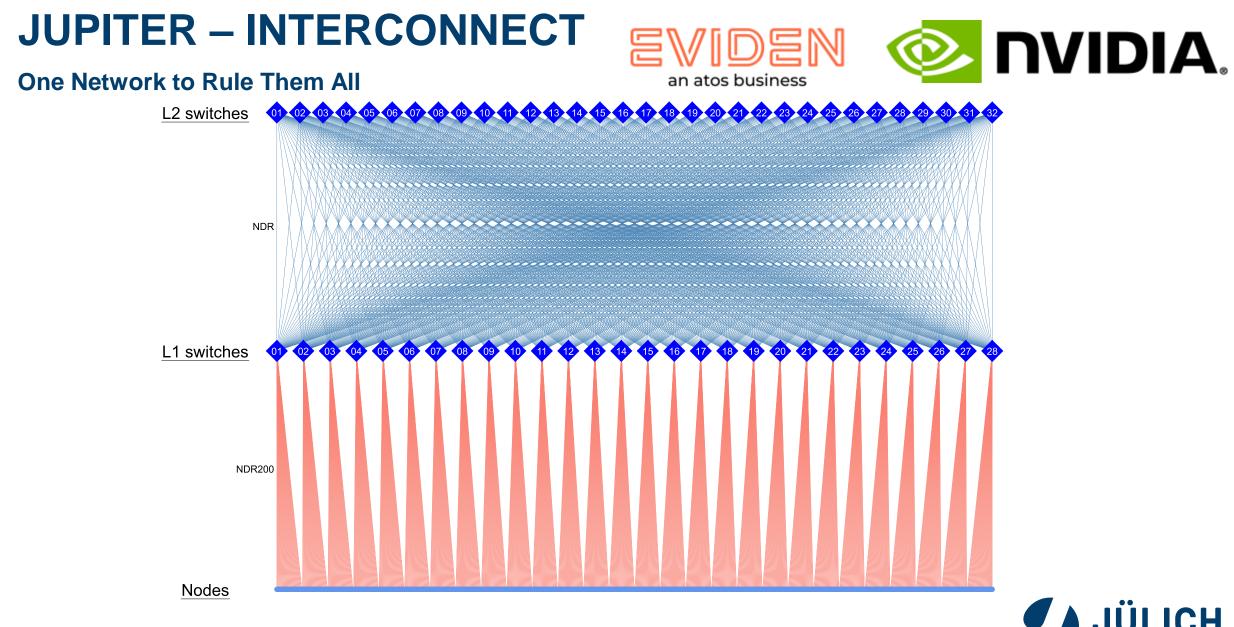

One Network to Rule Them All


- NVIDIA Mellanox InfiniBand NDR/NDR200
 - NVIDIA Quantum-2 switches
 - NVIDIA Connect-X7 HCAs
- Dragonfly+ topology
 - 27 Dragonfly groups
 - Within each group: full fat tree
- 51000 links, 102000 logical ports, 25400 endpoints, 867 switches
- Adaptive Routing
- In-network processing on switch level (SHARPv3), tentatively




JUPITER – INTERCONNECT

One Network to Rule Them All



Forschungszentrum

SYSTEM MANAGEMENT

JUPITER Management Stack

3 main pillars/actors

SMC xScale Core part of the stack. Vast majority of components come from here.

Developed by Eviden

Heavily based on open source and cloud technologies

Mitglied der Helmholtz-Gemeinschaft

JUPITER Management Stack
3 main pillars/actors

SMC xScale	ParaStation
Core part of the stack. Vast majority of components come from here.	Enhancement of the core
Developed by Eviden	Developed by ParTec
Heavily based on open source and cloud technologies	Integrates ParTec tools in SMCx to streamline their support workflows

JUPITER Management Stack

3 main pillars/actors

SMC xScale	ParaStation	xOPS
Core part of the stack. Vast majority of components come from here.	Enhancement of the core	Enhancement of the core
Developed by Eviden	Developed by ParTec	Developed by JSC
Heavily based on open source and cloud technologies	Integrates ParTec tools in SMCx to streamline their support workflows	Extensive set of Ansible roles for HPC, targeting JSC's requirements and needs

Forschungszentrum

CENTRE

	Technology	Challenges		Provid	ler
Operating System	Linux	Security F Stability	Performance HW support		
Mitglied der Helmholtz-Gemei	nschaft	ourtesy of EVIDE	EN	JÜLICH Forschungszentrum	JÜLICH SUPERCOMPUTING CENTRE

	Technology	Challenges	Provider
Operating System	Linux	Security Performance Stability HW support	
Management Storage	Ceph	Multi-use Scalable Performance	4
	Slide c	ourtesy of EVIDEN	

	Technology	Challenges	Provider
Operating System	Linux	Security Performance Stability HW support	
Management Storage	Ceph	Multi-use Scalable Performance	IBM
	Slide c	ourtesy of EVIDEN	

	Technology	Challenges	Provider
Operating System	Linux	Security Performance Stability HW support	
Management Storage	Ceph	Multi-use Scalable Performance	IBM
Management Plane	Kubernetes	Scalable 0 downtime Flexible Open	kubernetes

	Technology	Challenges	Provider
Operating System	Linux	Security Performance Stability HW support	
Management Storage	Ceph	Multi-use Scalable Performance	IBM
Management Plane	Kubernetes	Scalable 0 downtime Flexible Open	kubernetes
Configuration Management	Ansible	Standard Easy to extend Open	
		ourtesy of SVIDSN	

	Technology	Challenges	Provider
Operating System	Linux	Security Performance Stability HW support	
Management Storage	Ceph	Multi-use Scalable Performance	IBM
Management Plane	Kubernetes	Scalable O downtime Flexible Open	kubernetes
Configuration Management	Ansible	Standard Easy to extend Open	<u> </u>
Boot Image(s) Management	ImageBuilder	ARM / x86 Tracking support Integration	<u> </u>
	Slide c	ourtesy of EVIDEN	

Slide courtesy of EVIDEN

SUPERCOMPUTING

CENTRE

Forschungszentrum

	Technology	Challenges	Provider
Operating System	Linux	Security Performance Stability HW support	
Management Storage	Ceph	Multi-use Scalable Performance	IBM
Management Plane	Kubernetes	Scalable O downtime Flexible Open	kubernetes
Configuration Management	Ansible	Standard Easy to extend Open	<u> </u>
Boot Image(s) Management	ImageBuilder	ARM / x86 Tracking support Integration	4
Container(s)	UBI Universal Binary Images	Standard Security Consistency	
Slide courtesy of EVIDEN			

43

Forschungszentrum

CENTRE

	Technology	Challenges		Provider	
Resource Manager	Slurm	Scalable API	Known		ParaStation
Mitglied der Helmholtz-Gemein	nschaft Slide C	ourtesy of EVIDEN	0		

SUPERCOMPUTING

CENTRE

Forschungszentrum

	Technology	Challenges	Provider	
Resource Manager	Slurm	Scalable Known API	SCHEDNO ParaStation	
Parallel Storage	Storage Scale System (GPFS)	Performance Scalable Data security	IBM	
Slide courtesy of EVIDEN				

	Technology	Challenges	Provider
Resource Manager	Slurm	Scalable Known API	SCHEDING ParaStation
Parallel Storage	Storage Scale System (GPFS)	Performance Scalable Data security	IBM
MPI Runtime	Message Passing Interface	Stable GPU-support Performance Bug-free	ParaStation MPI Open MPI
	Slide c	ourtesy of SVIDSN	

	Technology	Challenges	Provider
Resource Manager	Slurm	Scalable Known API	SCHEDING ParaStation
Parallel Storage	Storage Scale System (GPFS)	Performance Scalable Data security	IBM
MPI Runtime	Message Passing Interface	Stable GPU-support Performance Bug-free	ParaStation MPI Open MPI
GPU Support	CUDA HPC SDK	Memory Performance management Integration	NVIDIA.
	Slide c	ourtesy of SVIDSN	

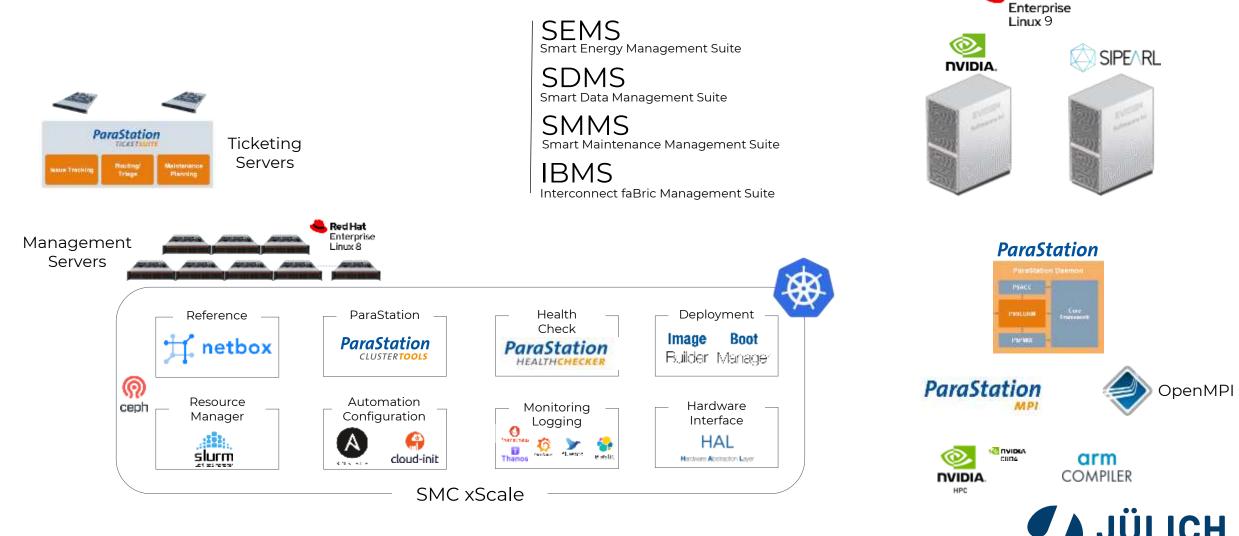
	Technology	Challenges	Provider
Resource Manager	Slurm	Scalable Known API	SCHEDING ParaStation
Parallel Storage	Storage Scale System (GPFS)	Performance Scalable Data security	IBM
MPI Runtime	Message Passing Interface	Stable GPU-support Performance Bug-free	ParaStation MPI Open MPI
GPU Support	CUDA HPC SDK	Memory Performance management Integration	
	Slide c	ourtesy of SVIDSN	

	Technology	Challenges	Provider
Resource Manager	Slurm	Scalable Known API	SCHEDING ParaStation
Parallel Storage	Storage Scale System (GPFS)	Performance Scalable Data security	IBM
MPI Runtime	Message Passing Interface	Stable GPU-support Performance Bug-free	ParaStation
GPU Support	CUDA HPC SDK	Memory Performance management Integration	
Monitoring & Logging	Prometheus + Thanos Syslog + Fluentd	Usable Scalable Handle data storm	Prometheus Thanos fluentd
		ourtoov of ENGEN	

Slide courtesy of EVIDEN

SUPERCOMPUTING

CENTRE

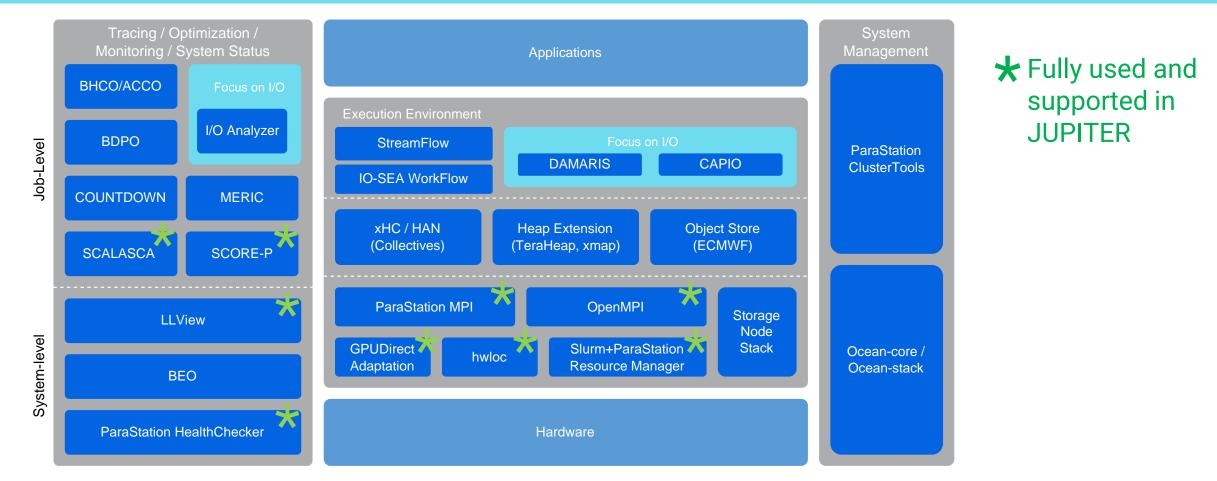

Forschungszentrum

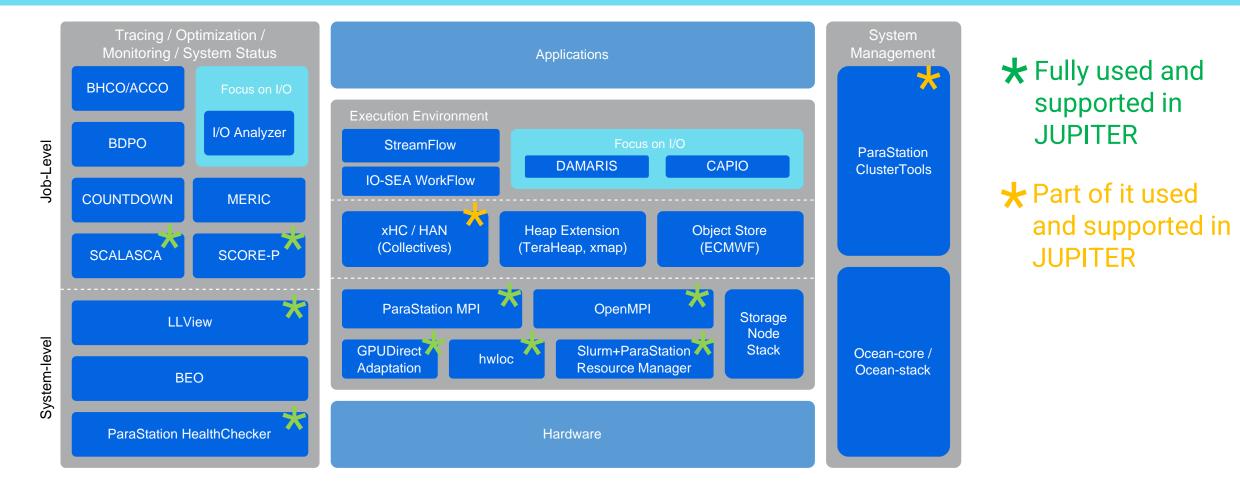
	Technology	Challenges	Provider
Resource Manager	Slurm	Scalable Known API	SCHEDNO ParaStation
Parallel	Storage Scale System	Performance Scalable	IBM
Storage	(GPFS)	Data security	
MPI	Message Passing	Stable GPU-support	
Runtime	Interface	Performance Bug-free	
GPU Support	CUDA HPC SDK	Memory Performance management Integration	
Monitoring &	Prometheus + Thanos	Usable Scalable	Prometheus Thanos fluentd
Logging	Syslog + Fluentd	Handle data storm	
Reference	Data Center Information	Automation API	<mark>;</mark> netbox
Database	Management	Coherent	
Slide courtesy of EVIDEN			

50

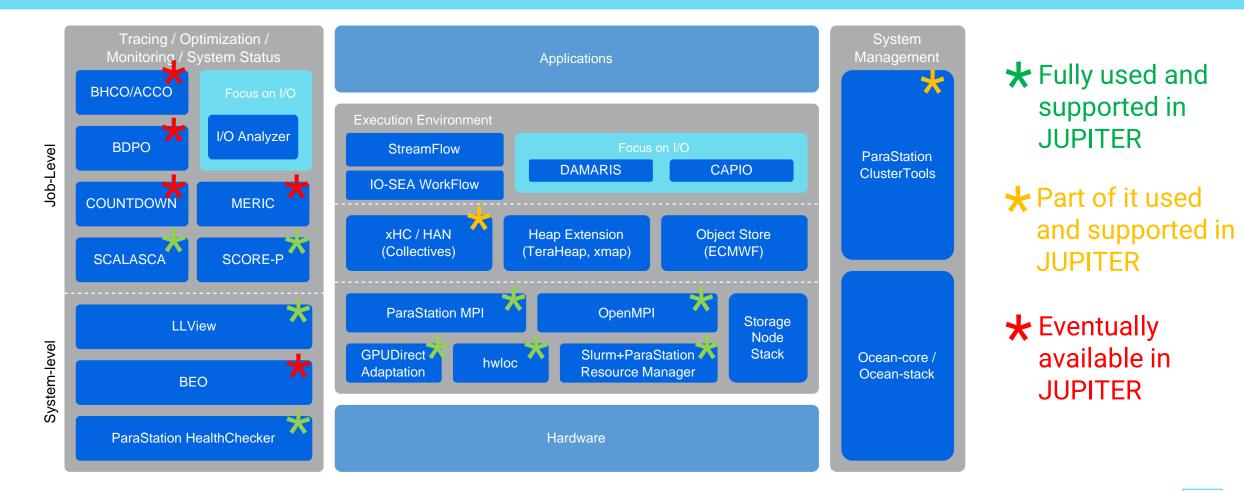
JUPITER MANAGEMENT STACK

A view from the vendor consortium


Slide courtesy of


Red Hat

Forschungszentrum


WP5 – EUPEX Software Stack Overview

WP5 – EUPEX Software Stack Overview

WP5 – EUPEX Software Stack Overview

JUPITER

The Arrival of Exascale in Europe

fz-juelich.de/jupiter | #exa_jupiter

ederal Ministr of Education and Research

Ministry of Culture and Science of the State of North Rhine-Westnhy

JOINING FORCES

Bundesministerium für Bildung und Forschung

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

fz-juelich.de/jupiter