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Introduction
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Summary of effects and strategies to utilise Arm ISAs 

▪ Scalable Vector Extension (SVE)

▪ HBM (available on Fujitsu’s A64FX processor)

CloudSC

▪ Physics component of the Integrated Forecasting System (IFS) 

• A cloud microphysics parameterisation 

▪ Known for being computationally demanding

Brief overview of co-design with ECMWF, Eviden, EUPEX, ESiWACE, and the EPI



Effects of 
vectorisation 
on performance

3Performance of CloudSC without vectorisation, with auto-vectorisation, a handwritten SVE kernel, & auto-vectorised refactored kernel



4

Auto-vectorisation boosts 
performance by 87.6%
Refactoring the hottest loop 
yields an increase of 57.9% 
over base performance
Handwritten SVE intrinsics 
kernel written in C and called 
from Fortran achieves 95.6% 
of performance of the auto-
vectorised refactored loop
Only 5.87% of maximum 
theoretical FLOPS per node

Performance of CloudSC without vectorisation, with auto-vectorisation, a handwritten SVE kernel, & auto-vectorised refactored kernel
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Using C SVE 
intrinsics in 
Fortran

Performance of various kernels against a Fortran auto-vectorisation baseline
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The IFS, and by extension 
CloudSC, is written almost 
entirely in Fortran
▪ Not feasible to translate 

the whole codebase
▪ SVE intrinsics are only 

available in C

Performance of various kernels against a Fortran auto-vectorisation baseline
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The solution is to identify hot 
sections of the codebase and 
hand write SVE kernels for 
these in C, which can be 
called from Fortran
Fortran is aligned to 64 bytes, 
while C is aligned to 16 by 
default
▪ Only aligning to 64 bytes 

gave a performance 
increase over baseline

▪ Aligning to 16 bytes gave 
a performance 
regression

Performance of various kernels against a Fortran auto-vectorisation baseline
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Impact of 
memory 
bandwidth on 
CloudSC

Roofline graph for the A64FX processor of CloudSC with various optimisations applied. Theoretical bounds used
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CloudSC is known to be 
compute intensive and often 
not bound by memory 
bandwidth. 
Performance is modelled 
with a naïve equation: T1 = 
T0α(f0/f1) + T0β(BW0/BW1) 
Runs were taken varying only 
the CPU frequency, as it is the 
easiest of the two variables
α = 0.651 & β = 0.343 for 
CloudSC
Not memory bound at 
practical problem sizes

Roofline graph for the A64FX processor of CloudSC with various optimisations applied. Theoretical bounds used. Single precision used.

• T0 & T1: Are the time taken from two 
separate runs

• α: Compute dependency (α = 1, purely 
compute bound)

• f0 & f1: The CPU frequencies used on the 
two runs, varied between runs

• β: Memory bandwidth dependency (β = 1, 
purely memory bound)

• BW0 & BW1: The memory bandwidths 
used on the two runs, assumed to be 
constant



10

Work for the 
future

CloudSC on a Fujitsu A64FX node vs ECMWF’s current operational AMD EPYC 7742 node

Better overall performance
▪ Currently CloudSC is 

only achieving ~6% of 
maximum  theoretical 
FLOPS

▪ How do we make it 
better?



11CloudSC on a Fujitsu A64FX node vs ECMWF’s current operational AMD EPYC 7742 node

Use Loki to automate the 
process of writing SVE 
kernels
▪ A source-to-source 

translation tool
▪ Recipes can be tailored 

to ECMWF code bases
▪ We can make more 

assumptions than the 
compiler can

▪ Directives can give more 
explicit hints to Loki 

▪ Vectorise at the source 
code level, so no reliance 
on new compilers



Loki in Action
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Loop unroll
Constant 
propagation



Discoveries Since D3.2
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CloudSC wastes a lot of stack space on temporaries

▪ This can pollute the cache and greatly decrease performance

A lot of the branching can be eliminated with branchless programming 

techniques

▪ CloudSC often branches within loops depending on the state of precipitation within 

clouds - rain, snow, hail, etc.

▪ This enables more SIMD code generation



An Example of Branchless Programming
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EUPEX and ESiWACE CoE
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ESiWACE: Excellence in Simulation of Weather and Climate in EU

▪ High Performance Climate and Weather benchmark suite

• Compares performance & performance portability on different HPC systems (CPU, GPU, Memory hierarchy, etc.)

• Deployed on various x86 and aarch64 CPUs, explore software stack capability and obtained performance 

metrics, identify code optimization opportunities and give feedback to developers and technology providers

• Leads to exchange of ideas with developers, technology providers and HPC vendors (i.e. co-design)

• Include IFS dwarfs: ecRad, ecTrans, Dwarf-P-CloudSC

• The reference test cases are currently defined by ECMWF in ESiWACE: Configuration, reference input data, output data 

validation, timing extraction

• Periodic meeting between Eviden and ECMWF to synchronize and exchange technical information



EUPEX, ESiWACE CoE, and EPI
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ecTrans, early results

CloudSC, HBM Assessment
Intel Xeon Max (Sapphire Rapids w. HBM)

0 200000 400000 600000 800000

AMD_9654_2s_96c_2t_edr_768GB…

t-mt-collins (Altra Max)

t-gpu-gh200 (Grace)

Intel_8480_2s_56c_2t_edr_512GB_…

AMD_7763_2s_64c_2t_hdr100_25…

Intel_8358_2s_32c_2t_edr_256GB_…

compute (Graviton3)

Ampere_Q8030_1s_80c_1t_edr_25…

Fuji_A64FX_1s_48c_1t_edr_32GB_…

ecTrans - Case1-SP - Execution Time (ms)

acfl-23.10 nvhpc-24.1 gcc-13.2.0
32 64 128 256

HBM 229,32 229,1 229,09 228,07

DDR 227,15 219,13 206,76 199,5
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CloudSC-MPI 32 MPI 7 threads, SPR HBM

HBM DDR

+ many compiling / 
runtime issues recorded

Co-Design in Action
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