
This project has received funding from the European High-Performance Computing
Joint Undertaking (JU) under grant agreement No 101033975. The JU receives support
from the European Union’s Horizon 2020 research and innovation programme and
France, Germany, Italy, Greece, United Kingdom, Czech Republic, Croatia.

D3.2 IFS -

Manual and Automated Vectorisation for
the Integrated Forecasting System

Andrew Beggs, Olivier Marsden, Ioan Hadade

Andrew.Beggs@ecmwf.int, Olivier.Marsden@ecmwf.int, Ioan.Hadade@ecmwf.int

Introduction

2

Summary of effects and strategies to utilise Arm ISAs

▪ Scalable Vector Extension (SVE)

▪ HBM (available on Fujitsu’s A64FX processor)

CloudSC

▪ Physics component of the Integrated Forecasting System (IFS)

• A cloud microphysics parameterisation

▪ Known for being computationally demanding

Brief overview of co-design with ECMWF, Eviden, EUPEX, ESiWACE, and the EPI

Effects of
vectorisation
on performance

3Performance of CloudSC without vectorisation, with auto-vectorisation, a handwritten SVE kernel, & auto-vectorised refactored kernel

4

Auto-vectorisation boosts
performance by 87.6%
Refactoring the hottest loop
yields an increase of 57.9%
over base performance
Handwritten SVE intrinsics
kernel written in C and called
from Fortran achieves 95.6%
of performance of the auto-
vectorised refactored loop
Only 5.87% of maximum
theoretical FLOPS per node

Performance of CloudSC without vectorisation, with auto-vectorisation, a handwritten SVE kernel, & auto-vectorised refactored kernel

5

Using C SVE
intrinsics in
Fortran

Performance of various kernels against a Fortran auto-vectorisation baseline

6

The IFS, and by extension
CloudSC, is written almost
entirely in Fortran
▪ Not feasible to translate

the whole codebase
▪ SVE intrinsics are only

available in C

Performance of various kernels against a Fortran auto-vectorisation baseline

7

The solution is to identify hot
sections of the codebase and
hand write SVE kernels for
these in C, which can be
called from Fortran
Fortran is aligned to 64 bytes,
while C is aligned to 16 by
default
▪ Only aligning to 64 bytes

gave a performance
increase over baseline

▪ Aligning to 16 bytes gave
a performance
regression

Performance of various kernels against a Fortran auto-vectorisation baseline

8

Impact of
memory
bandwidth on
CloudSC

Roofline graph for the A64FX processor of CloudSC with various optimisations applied. Theoretical bounds used

9

CloudSC is known to be
compute intensive and often
not bound by memory
bandwidth.
Performance is modelled
with a naïve equation: T1 =
T0α(f0/f1) + T0β(BW0/BW1)
Runs were taken varying only
the CPU frequency, as it is the
easiest of the two variables
α = 0.651 & β = 0.343 for
CloudSC
Not memory bound at
practical problem sizes

Roofline graph for the A64FX processor of CloudSC with various optimisations applied. Theoretical bounds used. Single precision used.

• T0 & T1: Are the time taken from two
separate runs

• α: Compute dependency (α = 1, purely
compute bound)

• f0 & f1: The CPU frequencies used on the
two runs, varied between runs

• β: Memory bandwidth dependency (β = 1,
purely memory bound)

• BW0 & BW1: The memory bandwidths
used on the two runs, assumed to be
constant

10

Work for the
future

CloudSC on a Fujitsu A64FX node vs ECMWF’s current operational AMD EPYC 7742 node

Better overall performance
▪ Currently CloudSC is

only achieving ~6% of
maximum theoretical
FLOPS

▪ How do we make it
better?

11CloudSC on a Fujitsu A64FX node vs ECMWF’s current operational AMD EPYC 7742 node

Use Loki to automate the
process of writing SVE
kernels
▪ A source-to-source

translation tool
▪ Recipes can be tailored

to ECMWF code bases
▪ We can make more

assumptions than the
compiler can

▪ Directives can give more
explicit hints to Loki

▪ Vectorise at the source
code level, so no reliance
on new compilers

Loki in Action

12

Loop unroll
Constant
propagation

Discoveries Since D3.2

13

CloudSC wastes a lot of stack space on temporaries

▪ This can pollute the cache and greatly decrease performance

A lot of the branching can be eliminated with branchless programming

techniques

▪ CloudSC often branches within loops depending on the state of precipitation within

clouds - rain, snow, hail, etc.

▪ This enables more SIMD code generation

An Example of Branchless Programming

14

EUPEX and ESiWACE CoE

15

ESiWACE: Excellence in Simulation of Weather and Climate in EU

▪ High Performance Climate and Weather benchmark suite

• Compares performance & performance portability on different HPC systems (CPU, GPU, Memory hierarchy, etc.)

• Deployed on various x86 and aarch64 CPUs, explore software stack capability and obtained performance

metrics, identify code optimization opportunities and give feedback to developers and technology providers

• Leads to exchange of ideas with developers, technology providers and HPC vendors (i.e. co-design)

• Include IFS dwarfs: ecRad, ecTrans, Dwarf-P-CloudSC

• The reference test cases are currently defined by ECMWF in ESiWACE: Configuration, reference input data, output data

validation, timing extraction

• Periodic meeting between Eviden and ECMWF to synchronize and exchange technical information

EUPEX, ESiWACE CoE, and EPI

16

ecTrans, early results

CloudSC, HBM Assessment
Intel Xeon Max (Sapphire Rapids w. HBM)

0 200000 400000 600000 800000

AMD_9654_2s_96c_2t_edr_768GB…

t-mt-collins (Altra Max)

t-gpu-gh200 (Grace)

Intel_8480_2s_56c_2t_edr_512GB_…

AMD_7763_2s_64c_2t_hdr100_25…

Intel_8358_2s_32c_2t_edr_256GB_…

compute (Graviton3)

Ampere_Q8030_1s_80c_1t_edr_25…

Fuji_A64FX_1s_48c_1t_edr_32GB_…

ecTrans - Case1-SP - Execution Time (ms)

acfl-23.10 nvhpc-24.1 gcc-13.2.0
32 64 128 256

HBM 229,32 229,1 229,09 228,07

DDR 227,15 219,13 206,76 199,5

0

50

100

150

200

250

G
fl

o
p

/s

NPROMA

CloudSC-MPI 32 MPI 7 threads, SPR HBM

HBM DDR

+ many compiling /
runtime issues recorded

Co-Design in Action

	Diapositive 1 D3.2 IFS -
	Diapositive 2 Introduction
	Diapositive 3 Effects of vectorisation on performance
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12 Loki in Action
	Diapositive 13 Discoveries Since D3.2
	Diapositive 14 An Example of Branchless Programming
	Diapositive 15 EUPEX and ESiWACE CoE
	Diapositive 16 EUPEX, ESiWACE CoE, and EPI

