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I Introduction

= Summary of effects and strategies to utilise Arm ISAs

= Scalable Vector Extension (SVE)
= HBM (available on Fujitsu’s A64FX processor)

= CloudSC

= Physics component of the Integrated Forecasting System (IFS)

» A cloud microphysics parameterisation

= Known for being computationally demanding

= Brief overview of co-design with ECMWEF, Eviden, EUPEX, ESIWACE, and the EPI

*EUrex CCECMWF 2
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Fortran vs C Vectorisation Performance - Fortran Baseline
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The IFS, and by extension
CloudSC, is written almost
entirely in Fortran

= Not feasible to translate
the whole codebase

= SVE intrinsics are only
available in C

Fortran vs C Vectorisation Performance - Fortran Baseline
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Fortran vs C Vectorisation Performance - Fortran Baseline
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Impact of
memory

bandwidth on
CloudSC

GFLOPS
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CloudSC is known to be
compute intensive and often
not bound by memory
bandwidth.

Performance is modelled
with a naive equation: T, =
Toa(fy/f;) + ToB(BW,/BW,)
Runs were taken varying only
the CPU frequency, as it is the
easiest of the two variables
a=0.651 & B =0.343 for
CloudSC

Not memory bound at
practical problem sizes

GFLOPS
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Compute Boundary

T, & T: Are the time taken from two
separate runs

a: Compute dependency (a = 1, purely
compute bound)

- f,&f,: The CPU frequencies used on the
two runs, varied between runs

B: Memory bandwidth dependency (B =1,
purely memory bound)

BW, & BW,: The memory bandwidths
used on the two runs, assumed to be
constant
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Roofline graph for the A64FX processor of CloudSC with various optimisations applied. Theoretical bounds used. Single precision used.
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CloudSC on a Fujitsu A64FX node vs ECMWF's current operational AMD EPYC 7742 node
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CloudSC on a Fujitsu A64FX node vs ECMWF's current operational AMD EPYC 7742 node




Constant
propagation

=)

Loop unroll

=)
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» CloudSC wastes a lot of stack space on temporaries

This can pollute the cache and greatly decrease performance

» A lot of the branching can be eliminated with branchless programming
techniques

CloudSC often branches within loops depending on the state of precipitation within

clouds - rain, snow, hail, etc.

This enables more SIMD code generation

*EUrEx SSECMWEF



JM)<RLMIN) THEN
) = ZLNEG(JL,JK,IJM)+ZOX
= ZOX(JL,JIK,IM)*20
(JL,JK) = tendency_locH
) THEN
5 l L3 1"~.) = tender

ENDIF
IF (IPHASE(IM)==2) THEN
tendency ) I(
ENDIF
ZOX(JL,JK,N
ZOX(JIL,IK,IM)
ENDIF
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ENDIF
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> ESIWACE: Excellence in Simulation of Weather and Climate in EU A

High Performance Climate and Weather benchmark suite H PCV

- Compares performance & performance portability on different HPC systems (CPU, GPU, Memory hierarchy, etc.)

« Deployed on various x86 and aarch64 CPUs, explore software stack capability and obtained performance
metrics, identify code optimization opportunities and give feedback to developers and technology providers

 Leads to exchange of ideas with developers, technology providers and HPC vendors (i.e. co-design)

* Include IFS dwarfs: ecRad, ecTrans, Dwarf-P-CloudSC

« The reference test cases are currently defined by ECMWEF in ESIWACE: Configuration, reference input data, output data
validation, timing extraction

 Periodic meeting between Eviden and ECMWF to synchronize and exchange technical information
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1 EUPEX, ESiIWACE CoE, and EPI

Co-Design in Action

> ecTrans, early results ==)
> CloudSC, HBM Assessment

‘ > Intel Xeon Max (Sapphire Rapids w. HBM)

CloudSC-MPI 32 MPI 7 threads, SPR HBM
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ecTrans - Case1-SP - Execution Time (ms)
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o

macfl-23.10 mnvhpc-24.1 mgcc-13.2.0

+ many compiling /

runtime issues recorded
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