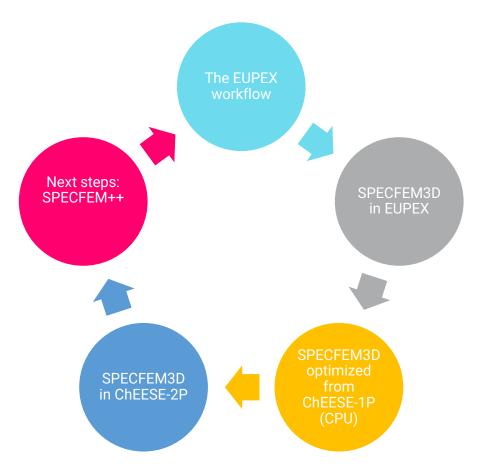
A EUPEX-ChEESE cooperation: the SPECFEM3D(++) example; context, preliminary results and next steps

Présenter Piero Lanucara CINECA

EUPEX Forum 2024


EUPEX

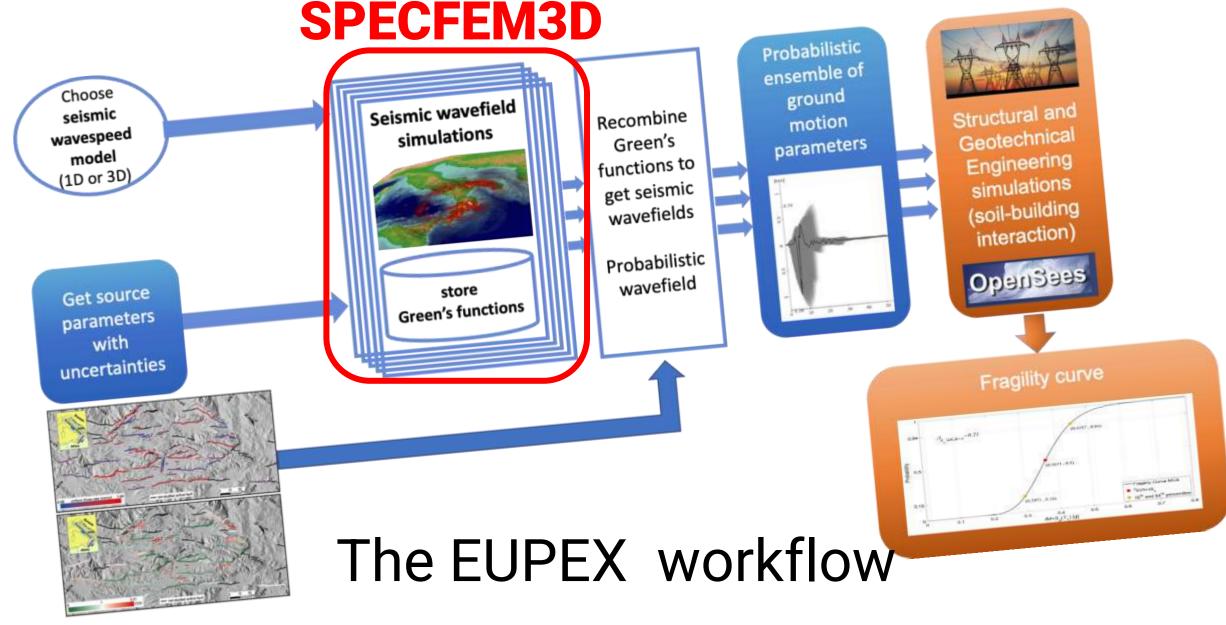
This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101033975. The JU receives support from the European Union's Horizon 2020 research and innovation programme and France, Germany, Italy, Greece, United Kingdom, Czech Republic, Croatia.

From faults to buildings

Integrated seismological/engineering probabilistic workflow

scal

ocal


ground egional motion acceleration scenarios

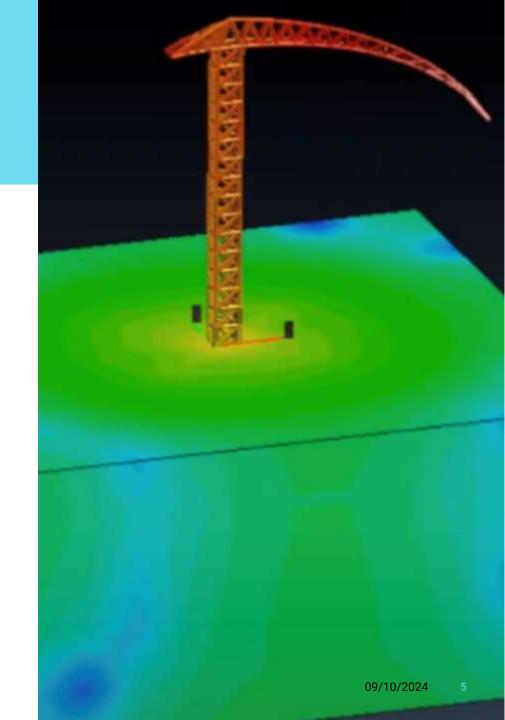
scale

impact on strategic buildings

Countra applic with high-performance

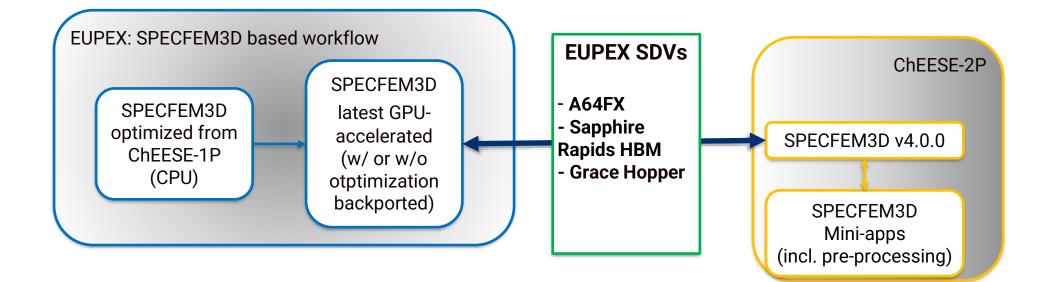
HPC for natural disaster resilience

From geology to probabilistic seismic engineering analysis

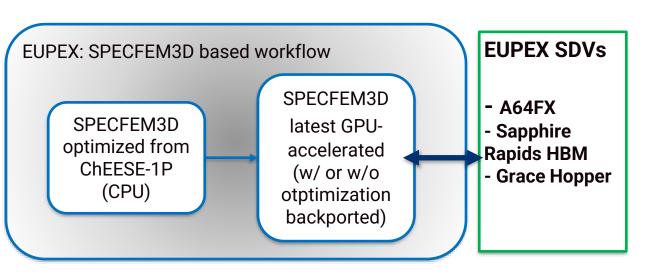


Structural and Geotechnical Engineering simulations

> The Engineering applications will be performed using the OPEN-SOURCE

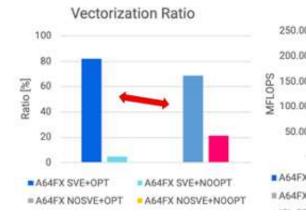

framework **OpenSeeS**

- Soil-Structure Interaction (SSI), of large domains
- HPC capabilities in developing detailed large scale seismic probabilistic frameworks

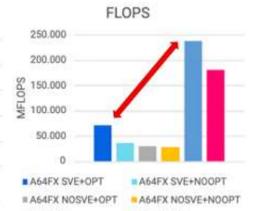

ChEESE-EUPEX Collaboration Diagram for SPECFEM3D

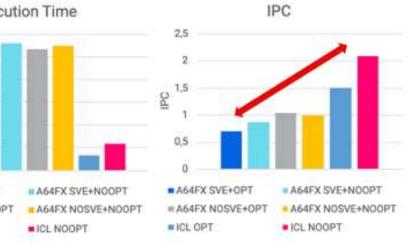
SPECFEM3D IN EUPEX

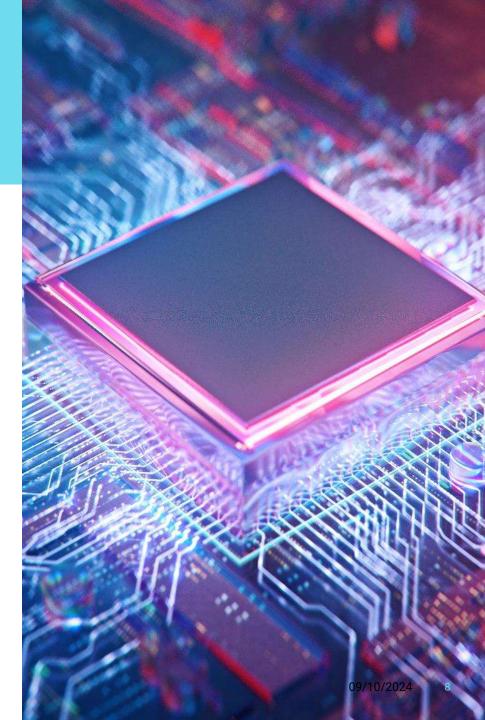
- Target a complete workflow including SPECFEM3D
- Focus on optimized version from ChEESE-1P (CNRS/Atos/Eviden version)
- Two main branches:
 - Elastic simulation (vectorization improved for CPU architectures)
 - Full SPECFEM3D (including seismic tomography features): still missing some optimization/tuning (anisotropic materials). Available in <u>zenodo</u>
- But target latest accelerated version for production level test case and associated workflow
- A64FX performance tests done, will continue on Grace Hopper (soon)

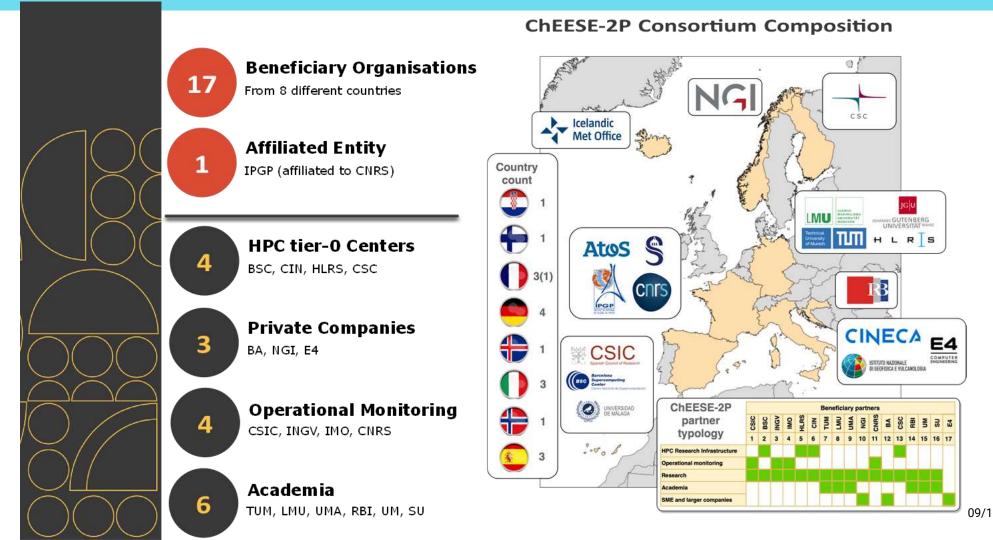

EUPEX Forum 2024

-I JDEX


SPECFEM3D optimized from ChEESE-1P (CPU)


- Performance assessment > of the ChEESE-1P optimized version on Irene (A64FX)
- Comparison with G100 ≻ (x86 machine in CINECA)
- > Preliminary work done evaluating HBM improvement (on-going)

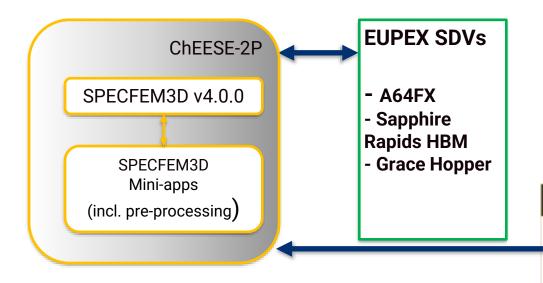

EUPEX



EUPEX Forum 2024

ChEESE-2P CoE

EUPEX



09/10/2024

SPECFEM3D IN ChEESE-2P

- WP2 "Exascale technical challenges in flagship codes"
 - Leonardo booster code audit (scaling etc.) and suggestions using the full app (published in D2.1)
 - Ongoing work for D2.2 (Dec. 2024) on performance portability campaign on GPU (MN5, LUMI, Leonardo) on the mini-apps.
 - Optimization in WP2: Reduce memory access, try different compression strategies (i.e., compressed arrays), need to check precision and do some tests, now on CPU then on GPU.
- WP3 "Co-design with European HPC vendors and technologies"
 - Focus on mini-apps, target ARM SVE and HBM before EUPEX availability.

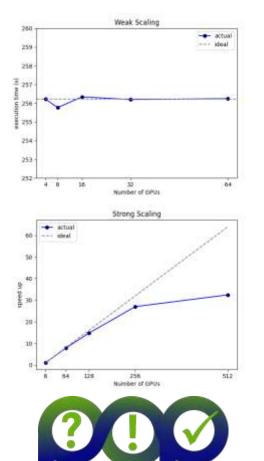
Area	No	Code	Lead	CHEESE		Tier-0	(pre-ex	ascale)	TOP500	
	1	SeisSol	LMU/TUM	-1P yes		LUMI	Finland	~500 PFlop/s peak	5	
ĊS	2	SPECFEM3D	CNRS	yes		Leonardo	Italy	~300 PFlop/s peak	6	
	3	ExaHyPE Tandem	TUM LMU	yes no	K	MN5 ACC	Spain	~250 PFlop/s peak	8	
MHD	5	XSHELLS	CNRS	Vas				реак		
т	6	HySEA	UMA	100						
v	7	FALL3D	CSIC	yes						
•	8	OpenPDAC	INGV	no				000 PFlo computir		
GD	9	LaMEM	UM	no		aggre	guteu	computi	ig pow	CI
30	10	pTatin3D	SU	no						
GL	-11	Elmer/ICE	CSC	no		but (acce	with a erated	variety o) archite	of diffe	rent 9/10/2024

FUpex

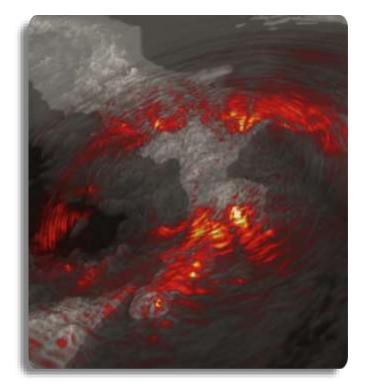
SPECFEM3D IN ChEESE-2P

https://specfem.org/

- Spectral-element method:
 - B CPU, GPU, MPI (domain decomposition)
- Solves linear seismic wave propagation in 3D models :
 - ${\scriptstyle \rm I\!I}$ $\,$ Elastic, viscoelastic, piroelastic, and fluid solid interactions
 - Implements imaging and Full Waveform Inversion for complex models
- Scalability evaluated on Leonardo booster:
 - Weak scaling : from 4 to 64 GPUs, 360448 mesh elements per GPU

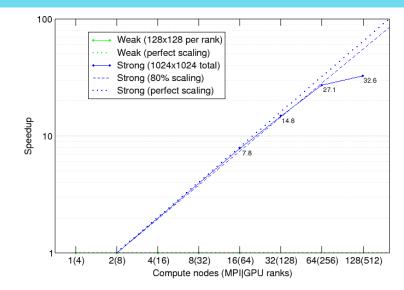

excellent weak scaling up to 64 GPUs (and likely beyond)

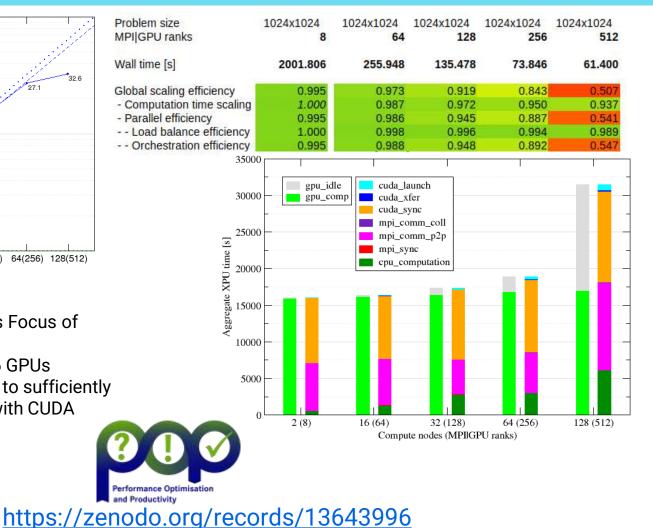
Strong scaling :


good strong scaling up to 256 GPUs

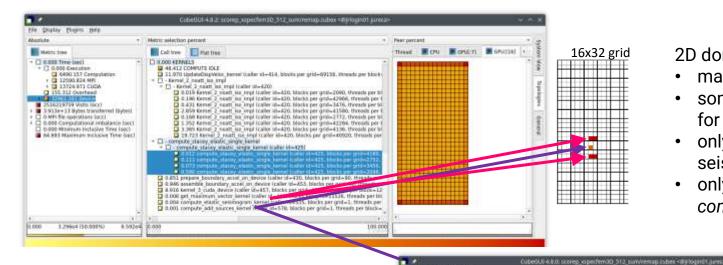
overlapping MPI communication with GPU computation

SPECFEM3D has been optimized for various GPU architectures (using primarily CUDA and HIP as GPU programming model).




ChEESE-2P GPU assesment on SPECFEM3D

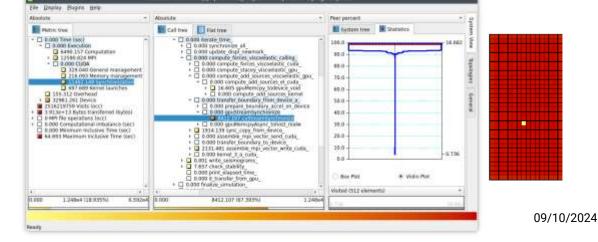
ChEESE


POP3_AR_002

- iterate_time (solver) chosen as Focus of Analysis
- Good strong scaling up to 256 GPUs
- With 512 GPUs no longer able to sufficiently overlap MPI communication with CUDA kernels

ChEESE-2P GPU assesment on SPECFEM3D

2D domain decomposition on GPUs


ChEESE

- many kernels are well balanced
- some kernels execute much faster for interior compared to edges
- only four GPUs handle seismogram receivers
- only one GPU (#243) executes compute_add_sources_kernel

compute_add_sources_kernel executed on single GPU (#243) is rather short, however, results in all other GPUs having very long synchronization times in following transfer_boundary_from_device_a

 over two-thirds of CUDA synch time and over 30% of total CPU time

EUPEX Forum 2024

EU2EX

ChEESE-2P co-design on SPECFEM3D

- > Mini-apps developed by Vadim Monteiller (CNRS)
 - CPU, GPU (CUDA) and MPI
 - https://gitlab.com/specfem_cheese_2p/mini_specfem/specfem_mini_app
- > Goals
 - Ported and optimized for EUPEX and EUPILOT
 - Performance portability by testing different programming models/languages
- > Status
 - Performance characterization on x86
 - Ported to ARM (Ampere Altra and Grace)
 - Vectorization optimization
 - HBM study X

LIDEX

More optimization dedicated to HBM & ARM SVE

EUPEX Forum 2024

	8	0		+ 🗰	
	D	n		8	
	Q Rech	ercher au	eller	ch	
Pro	jet				
s	specfer	n_mini_app			
R	Epinglé				
	Tickets			0	
	Requitte	is de fusio	п	(0)	
80	Gestion			2	
63	Program	imation		(3)	
<p< td=""><td>Code</td><td></td><td>- 32</td><td></td></p<>	Code		- 32		
ø	Compila	tion		- 8	
۲	Dépicier		- 9		
	Opératio	201		2	
0	Surveille	ance		- 02	
Į.	Anatyse			- 5	

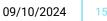
	на (1 0	specfem_cheose_2p (mini.spp (specfem_mini.app	
ou aller à	© 	specfem_mini_app	- 44 validations
.app		Mini apps based on specfem3d : https://gitlab.com/specfem_cheese_2p/full_app/specfem3d Each version of the mini application tests a particular case of specfem:	I [#] 2 branches ♂ 0 étiquette
usion	- 0 0 ×	<pre>scoustic_iso_mpi : cpu + MPI, scoustic (fluid) case elastic_iso_mpi : cpu + MPI, elastic isotropic case elastic_iso_vectorised_mpi : cpu + MPI + cache blocking vectoriza elastic_iso_att_mpi : cpu + MPI, visco-elastic isotropic case elastic_aniso_mpi : cpu + MPI, elastic anisotropic case</pre>	Date de création November 30, 2023
n	* * *	acoustic_iso_cuda_mpi : GPU + CUDA + MPI, acoustic (fluid) case elastic_iso_cuda_mpi : GPU + CUDA + MPI, elastic isotropic case elastic_iso_att_cuda_mpi : GPU + CUDA + MPI, visco-elastic isotro elastic_aniso_cuda_mpi : GPU + CUDA + MPI, elastic unisotropic ca	
	2	configuration and compilation	
	0.0	An example makefile is provided for each mini-application. The configuration is hard-	

An example makefile is provided for each mini-application. The configuration is herdcoded in config_mod./90, 4 configurations are defined and must be chosen before compilation.

ChEESE-2P co-design on SPECFEM3D

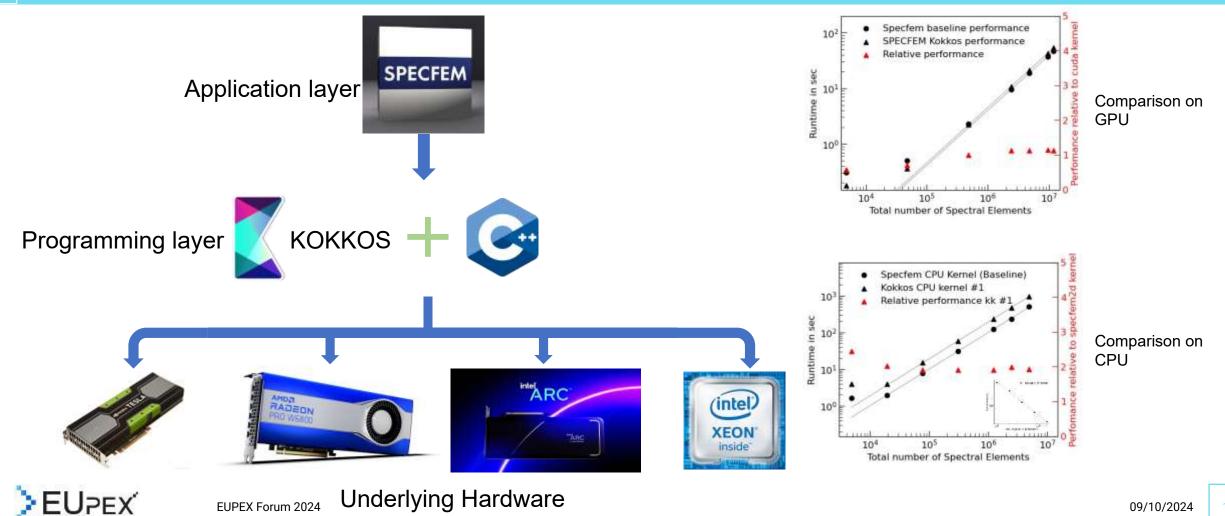
- First optimizations to improve vectorization on main kernel "compute_forces":
 - First attemps by hand: loop reordering, temporary arrays, etc.
 - Finally: addition of !\$OMP SIMD directives leads to best performance
- > Results on AMD Milan 7763 (1 socket with 64c)
- As mini-apps are all memory bound, the HBM should be effective in improving performance
- Next step: study the performance on HBM and optimize memory layout and access

Mini app	Execution time	Compute bound	Memory bound	Vectorized
elastic_aniso_mpi	259 s	77%	23%	No
elastic_iso_mpi	140s	49%	51%	No
elastic_iso_att_mpi	275 s	49%	51%	No


Add !\$OMP SIMD directives at the right spots

Mini app	Execution time	Speedup	Compute bound	Memory bound	Vectorized
elastic_aniso_mpi	166 s	1,6	61%	39%	Yes
elastic_iso_mpi	116 s	1,2	40%	60%	Yes
elastic_iso_att_mpi	240 s	1,1	37%	63%	Yes

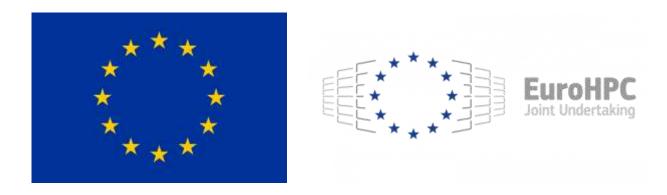
Work performed by Pelagie Alves and Stéphan Jauré from Eviden's Center for Excellence in Performance Programming (CEPP)


Next steps: SPECFEM++

- On production: use of the accelerated version of SPECFEM3D (on one node: 30x speedup CPU vs GPU on Jean Zay machine).
- CUDA, HIP and CPU version in the same code with 2 different memory structures (one for CPU et one for GPU), difficult to maintain.
- Maintain the CPU version anyway.

	CUDA/HIP/DPC++	OpenMP 5/ OpenACC	Kokkos
Portability across architectures	No. Need to write separate kernels for every architecture	Yes. Single source code with pragma-based approach	Yes, Single source code implemented using Kokkos functions
Performance	Optimized performance	Tough to optimize for performance	Very good performance
Cost of portability	Very high	/hy use Kokkos?	High
Cost of maintenance	Very high. Newer architectures might require tuning of kernels	Low. Assuming compilers do a good job of implementing the standard	Low. Assuming Kokkos backend is always optimized
Compiler dependence	N/A	These are standards, vendors have a flexibility on implementation	N/A
Fortran Support	No. Could use bindings	Yes	No. Could use bindings

Why use Kokkos?


Next steps: SPECFEM++

Acknowledgement

Funded by the European Union. ChEESE has received funding from the European High Performance Computing Joint Undertaking (JU) and Spain, Italy, Iceland, Germany, Norway, France, Finland and Croatia under grant agreement No 101093038.

Thanks to (among the others):

- Vadim Montellier - Emanuele Casarotti - Brian Wylie - Rohit Kakodkar - Pelagie Alves - Stéphan Jauré

CINECA, CNRS, INGV/HPC4NDR, BULL/ATOS/EVIDEN, Princeton Univ. UPEX

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101033975. The JU receives support from the European Union's Horizon 2020 research and innovation programme and France, Germany, Italy, Greece, United Kingdom, Czech Republic, Croatia.

