
This project has received funding from the European High-Performance Computing
Joint Undertaking (JU) under grant agreement No 101033975. The JU receives support
from the European Union’s Horizon 2020 research and innovation programme and
France, Germany, Italy, Greece, United Kingdom, Czech Republic, Croatia.

Using Flash for Intermediate Data
Management in HPC Applications

Giorgos Saloustros (gesalous@ics.forth.gr)

Institute of Computer Science (ICS),

Foundation for Research and Technology – Hellas
(FORTH)

28th Jan 2026, HiPEAC 26, Krakow, Poland

mailto:gesalous@ics.forth.gr

The Intermediate Data Challenge in HPC

2

Modern simulations (weather, physics) produce a large volume of transient data

▪ Produced concurrently from thousands of compute nodes

Need for immediate indexing for near-real-time analysis

▪ Consumed by post-processing tasks before being archived or discarded

Traditional Parallel Filesystems (e.g. Lustre) not designed for these workloads

▪ No efficient inherent indexing mechanism (metadata overhead)

The opportunity: Flash memory provides the IOPS and latency needed

▪ Need the right software stack to expose it without disrupting the applications

Weather Simulation Application (ECMWF)

3

Runs across 100s-1000s of compute nodes

▪ 4 times a day / tight time constraints for prognosis

Atmosphere split into tiles

▪ Keeps multiple metrics per tile

Intermediate data are stored in Fields Database (FDB)

▪ Implemented atop of POSIX filesystem (Lustre) (https://github.com/ecmwf/fdb)

Both tile count and metrics per tile increase over time

▪ Address challenge by using an flash tier for intermediate data

How to use the flash tier in the weather prognosis without major disruption?

https://github.com/ecmwf/fdb

Flash Allocation and Exposure

4

Data nodes equipped with flash devices

▪ (NVMe SSDs)

Allocate flash resources per job

▪ Integration with Slurm

Lifecycle management

▪ Provision → Use→ Release

Ingestion Challenge: Fast Writes and on the
Fly Indexing

5

Need to ingest data at high speeds (order of tenths of GB/s)

▪ Thousands of compute nodes write simultaneously

Must create searchable index during ingestion

▪ Index must work efficiently regardless of I/O and data size

▪ Write amplification must be controlled

▪ Reads must remain fast even when executing in parallel with the ingestion phase

The Indexing Dilemma: POSIX and B-Trees
Don't Scale

6

Posix filesystems (LUSTRE)

▪ Not designed for small files– metadata operations becomes bottleneck

▪ Custom indexing withing the application adds complexity

B-Tree writes generate high I/O amplification

▪ Poor for flash - kills flash endurance

LSM trees with lessons learned from the cloud come to the rescue

LSM-Trees: The Cloud's
Answer to Write-Heavy
Workloads

7

Powers cloud infrastructure

▪ Cassandra, RocksDB, LevelDB

Guaranteed large I/Os (order of MB)

regardless the I/O pattern

▪ Batching of writes

▪ Reorganization of the data

Efficient reads comparable to a B-tree

Parallax: LSM based KV
Store for HPC

8

Hybrid data placement to

reduce amplification

Different reorganization

strategies according to

object size

Major gains especially for large

objects

Support for high speed networks

▪ (Infiniband/BXI)

Deployment Modes

9

Preliminary Evaluation

10

Single node setup

8 writers where they are a total of 256 tiles

Stress the metadata part

Throughput for small KV pairs

11

660

680

700

720

740

760

780

800

820

Vanilla FDB Parallax FDB

S
e

c
o

n
d

s

8 writers, 256 datasets, total 160K fields

Thank you! Questions?

12

gesalous@ics.forth.gr

Backup Slides

13

Challenges: Provisioning and Indexing

14

#1: Allocation & Exposure

▪ Provision flash memory and assign it per job

▪ Integrate with existing HPC schedulers (Slurm): provision → use → release

#2: Data Indexing & Access

▪ Efficient indexing for structured, tile-based data

▪ Must handle heterogeneous I/O: small metadata, medium records, large arrays

▪ Efficient ingestion of simulation concurrently with reads for post-processing tasks

Provisioned Flash with Key-Value(KV) Storage

15

Flash tier for transient data

Provisioning through Slurm

▪ Storage lifecycle management per job

Data flow:

▪ Compute → Flash (hot) → Lustre (cold/archive)

KV storage atop of flash

	Slide 1: Using Flash for Intermediate Data Management in HPC Applications
	Slide 2: The Intermediate Data Challenge in HPC
	Slide 3: Weather Simulation Application (ECMWF)
	Slide 4: Flash Allocation and Exposure
	Slide 5: Ingestion Challenge: Fast Writes and on the Fly Indexing
	Slide 6: The Indexing Dilemma: POSIX and B-Trees Don't Scale
	Slide 7: LSM-Trees: The Cloud's Answer to Write-Heavy Workloads
	Slide 8: Parallax: LSM based KV Store for HPC
	Slide 9: Deployment Modes
	Slide 10: Preliminary Evaluation
	Slide 11: Throughput for small KV pairs
	Slide 12: Thank you! Questions?
	Slide 13: Backup Slides
	Slide 14: Challenges: Provisioning and Indexing
	Slide 15: Provisioned Flash with Key-Value(KV) Storage

