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The Intermediate Data Challenge in HPC
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Modern simulations (weather, physics) produce a large volume of transient data

▪ Produced concurrently from thousands of compute nodes

Need for immediate indexing for near-real-time analysis

▪ Consumed by post-processing tasks before being archived or discarded

Traditional Parallel Filesystems (e.g. Lustre) not designed for these workloads

▪ No efficient inherent indexing mechanism (metadata overhead)

The opportunity: Flash memory  provides the IOPS and latency needed

▪ Need the right software stack to expose it without disrupting the applications



Weather Simulation Application (ECMWF)
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Runs across 100s-1000s of compute nodes

▪ 4 times a day / tight time constraints for prognosis

Atmosphere split into tiles

▪ Keeps multiple metrics per tile

Intermediate data are stored in Fields Database (FDB) 

▪ Implemented atop of POSIX filesystem (Lustre) (https://github.com/ecmwf/fdb)

Both tile count and metrics per tile increase over time

▪ Address challenge by using an flash tier for intermediate data

How to use the flash tier in the weather prognosis without major disruption?

https://github.com/ecmwf/fdb


Flash Allocation and Exposure
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Data nodes equipped with flash devices

▪ (NVMe SSDs)

Allocate flash resources per job 

▪ Integration with Slurm

Lifecycle management

▪ Provision → Use→ Release



Ingestion Challenge: Fast Writes and on the 
Fly Indexing
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Need to ingest data at high speeds (order of tenths of GB/s)

▪ Thousands of compute nodes write simultaneously

Must create searchable index during ingestion

▪ Index must work efficiently regardless of I/O and data size

▪ Write amplification must be controlled

▪ Reads must remain fast even when executing in parallel with the ingestion phase



The Indexing Dilemma: POSIX and B-Trees 
Don't Scale
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Posix filesystems (LUSTRE)

▪ Not designed for small files– metadata operations becomes bottleneck

▪ Custom indexing withing the application adds complexity

B-Tree writes generate high I/O amplification 

▪ Poor for flash - kills flash endurance

LSM trees with lessons learned from the cloud come to the rescue



LSM-Trees: The Cloud's 
Answer to Write-Heavy 
Workloads
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Powers cloud infrastructure

▪ Cassandra, RocksDB, LevelDB

Guaranteed large I/Os (order of MB) 

regardless the I/O pattern

▪ Batching of writes 

▪ Reorganization of the data 

Efficient reads comparable to a B-tree



Parallax: LSM based KV 
Store for HPC
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Hybrid data placement to 

reduce amplification

Different reorganization

strategies according to 

object size

Major gains especially for large

objects 

Support for high speed networks

▪ (Infiniband/BXI)



Deployment Modes
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Preliminary Evaluation
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Single node setup

8 writers where they are a total of 256 tiles

Stress the metadata part 



Throughput for small KV pairs
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Thank you! Questions?
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gesalous@ics.forth.gr



Backup Slides
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Challenges: Provisioning and Indexing
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#1: Allocation & Exposure

▪ Provision flash memory and assign it per job

▪ Integrate with existing HPC schedulers (Slurm): provision → use → release

#2: Data Indexing & Access

▪ Efficient indexing for structured, tile-based data

▪ Must handle heterogeneous I/O: small metadata, medium records, large arrays

▪ Efficient ingestion of simulation concurrently with reads for post-processing tasks



Provisioned Flash with Key-Value(KV) Storage
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Flash tier for transient data

Provisioning through Slurm

▪ Storage lifecycle management per job

Data flow: 

▪ Compute → Flash (hot) → Lustre (cold/archive)

KV storage atop of flash
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