
This project has received funding from the European High-Performance Computing 
Joint Undertaking (JU) under grant agreement No 101033975. The JU receives support 
from the European Union’s Horizon 2020 research and innovation programme and 
France, Germany, Italy, Greece, United Kingdom, Czech Republic, Croatia.

Focus on the energy-efficiency of 
components of the IFS on Grace Hopper 
GH200 superchips

Andrew Beggs (ECMWF)
Samuel Hatfield (ECMWF)

Mathieu Stoffel (Eviden)

January 28th 2026



What are we going to talk about?

2

What is the IFS, and more specifically ecTrans?

Coarse-grain efficiency profiling of ecTrans on x86, aarch64 and GPU executions

▪ Motivation [ECMWF]: get some insight on the most suited HW target for ecTrans

Impact of GPU frequency scaling on ecTrans when executed on GPU

▪ Motivation [Eviden]: efficiency improvement potential with (static) GPU frequency scaling while agnostic of the
application (no prior knowledge, no source code modification, no recompilation)



3

What are the IFS and ecTrans?



What is the IFS?

4

The Integrated Forecasting System (IFS) is a sophisticated system which aims at forecasting weather-related 

physical quantities (e.g. temperature, pressure, rainfall, …) over Europe on a 15-day time scale

The forecasts built with the IFS are highly precise (if they say it will rain, you should take an umbrella) and 

have a high resolution (one side of a cell of the computation grid represents between 8 and 9 km)

This sophisticated system notably comprises data assimilation facilities, complex numerical models, and

computing infrastructures



What is the IFS?

5



Focus on ecTrans

6

ecTrans is “a high-performance numerical library for transforming meteorological fields between global grid-point space

representation and a spectral representation based on spherical harmonics” (wiki)

ecTrans belonged to the source code of the IFS, and was extracted from it and open-sourced in 2022 (source code)

I am 2 years older than ecTrans – more than 30 years of development and optimization!

Since ecTrans exhibits compute-intensive and communication-intensive phases and implements computational kernels

quite common in weather-related codes, it would be a great HPC benchmark … Good news, one benchmark was built from

it and is packaged with its source code

One of the input parameters of ecTrans is the Truncation Cubic Octahedral (TCO). It sets the overall resolution of the

computational grid, and hence of the benchmark. The higher the TCO, the larger the problem size. ECMWF production

forecasts are made with TCO = 1279

https://sites.ecmwf.int/docs/ectrans/page/benchmarking.html
https://github.com/ecmwf-ifs/ectrans/blob/develop/src/trans/gpu/internal/trgtol_mod.F90#L544
https://github.com/ecmwf-ifs/ectrans/blob/develop/src/trans/gpu/internal/trgtol_mod.F90#L544


7

Coarse-grain efficiency profiling of ecTrans on x86, aarch64 
and GPU executions



Architectures of the nodes used for experiments

8

Both nodes are state-of-the-art:

▪ x86 – same model freshly installed at IT4I/VSB

▪ aarch64 + GPU – twin model of JUPITER nodes

In the following, “aarch64” means “only the
Grace CPUs part of the node”

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝐸𝑓𝑓 =
𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
=

𝑃𝑒𝑟𝑓

𝑃𝑤𝑟

x86 node

XH3150 (TINO)

Eviden R&D system (RHEL97)

GCC-15 + OpenMPI-5.0

2x Intel Granite Rapids 6952P

792 GB DDR5 (6400 MT/s)

Infiniband NDR200

aarch64 + GPU node

XH3515-MP (NEBA Max-P)

Hosted in the SDV (RHEL95)

NVHPC-25.7

4x NVIDIA GH200 modules

• Grace CPU - 128 GB LPDDR5

• Hopper GPU - 96 GB HB3

• Infiniband NDR200



Experimental protocol

9

Single-node study with the same experimental parameters on 3 different architectures (x86, aarch64, GPU) to compare the

performance and efficiency of the ecTrans benchmark

Scale the size of the workload by increasing TCO (multiples of 100) while monitoring (1 Hz out-of-band) the full node

power consumption

The ecTrans benchmark reports a performance metric – the duration of the “Inverse-Direct” transform

The number of iterations of the computational kernel can be adjusted. With 500 iterations, the ecTrans benchmark lasts

roughly 5 minutes for TCO=1000 on GPUs (plus it is enough repetitions for statistics to be relevant)

Similarly, TCO=1000 was selected to compare architectures because that is the highest multiple of 100 for which the

workload fits in the memory of the GPUs



Coarse-grain profiling of ecTrans on x86

10

Scaling the workload (i.e. the TCO) on a single Intel GNR
compute node with execution of ecTrans on 2 x86 CPUs

GCC-15 + OpenMPI-5.0

Execution time is globally exponential (~O(𝑥2.4)) of the TCO

For TCO=1000 and 500 iterations:

▪ Duration of “Inverse-Direct” transform = 1517.6 ms

▪ Power consumption = 1014 W



Coarse-grain profiling of ecTrans on aarch64

11

Scaling the workload (i.e. the TCO) on a single GH200 compute
node with execution of ecTrans on 4 Grace CPUs

NVHPC-25.7

Execution time is globally exponential (~O(𝑥2.8)) of the TCO

The power consumption of the GPUs was subtracted from the
full node power consumption

For TCO=1000 and 500 iterations:

▪ Duration of “Inverse-Direct” transform = 1441.5 ms

▪ Power consumption = 1053 W



Coarse-grain profiling of ecTrans on GPU

12

Scaling the workload (i.e. the TCO) on a single GH200 compute
node with execution of ecTrans on 4 GPUs

NVHPC-25.7 (including OpenACC)

Execution time is globally quadratic (~O(𝑥2)) of the TCO

TCO=1000 fills 80+% of the memory of the GPUs (“limiting
factor” as stated previously)

For TCO=1000 and 500 iterations:

▪ Duration of “Inverse-Direct” transform = 363.7 ms

▪ Power consumption = … small issue here, let’s focus on it



Coarse-grain profiling of ecTrans on GPU

13

Power consumption, allocated
memory and GPU usage rate during
the execution of ecTrans for
TCO=1000

Imbalance between the GPUs

Erratic and limited usage rate of the
GPUs (~65%)

Low usage rate of the GPUs implies
lower power consumption when
compared to expectations (700+ W
per GPU sustained for HPL)



Coarse-grain profiling of ecTrans on GPU

14

We believe the low usage rate of GPUs stems from the fact that memory allocations and transfers of input data from host

to accelerator are done in the main computational loop, not in bulk before the latter

(Very) roughly, while moving data between host and accelerator, the GPUs are not computing - hence the low usage rate

Consequently, the full node power consumption associated with ecTrans benchmark is not representative of the full node

power consumption of ecTrans in the production context of the IFS (while performance are)

E.g. link to source code (L544-617) TRGTOL is a “leaf” function called in the main loop of the benchmark.

It transposes grid point data from column structure to latitudinal and it reorganizes data between grid point calculations and direct Fourier Transform.

In this function, like in all the other key “leaf” functions, OpenACC “COPYIN” directives are called just before “PARALLEL LOOP” directives.

Thus, data movement between host and accelerators happens at each iteration of the benchmark, just before the offloading of the nested computational loops.

https://github.com/ecmwf-ifs/ectrans/blob/develop/src/trans/gpu/internal/trgtol_mod.F90#L544
https://github.com/ecmwf-ifs/ectrans/blob/develop/src/trans/gpu/internal/trgtol_mod.F90#L544
https://github.com/ecmwf-ifs/ectrans/blob/develop/src/trans/gpu/internal/trgtol_mod.F90#L544
https://github.com/ecmwf-ifs/ectrans/blob/develop/src/trans/gpu/internal/trgtol_mod.F90#L544


Working around the power monitoring issue

15

Since measuring full node power consumption for ecTrans benchmark is not relevant to estimate full node power
consumption for production ecTrans, we can build a worst-case scenario for it.

Idea: use GPU-Burn (link to source code) as a surrogate to build an upper bound on the power consumption of production
ecTrans (and thus a lower bound on its efficiency)

Indeed, GPU-Burn induces a 100% rate usage with very high and steady power consumption on the GPUs (it is quite
unlikely that production ecTrans would consume more power than GPU-Burn).

Executing GPU-Burn with an 80% memory occupancy for nominal/maximal GPU frequency draws 3684 W (more details
about experiments with GPU-Burn in the last section)

https://github.com/wilicc/gpu-burn
https://github.com/wilicc/gpu-burn
https://github.com/wilicc/gpu-burn
https://github.com/wilicc/gpu-burn


Wrap up the efficiency comparison between x86, aarch64 and GPU

16

Execution of ecTrans benchmark is significantly more efficient on GPU, even in a worst-case scenario

There is a 4x speed up for single-node performance of ecTrans when going from CPUs to GPUs

For ecTrans, GPU is also better than CPU from the density POV, since there is usually 3 CPU nodes per 1U blade, versus 1

GPU node per 1U blade

x86 node

Inverse-Direct transform lasts:

Mean power consumption is:

Relative efficiency w.r.t. aarch64:

^Relative efficiency w.r.t. GPU:

1518 ms

1014 W

- 1.35 %

- 12.9 %

aarch64 node

Inverse-Direct transform lasts:

Mean power consumption is:

Relative efficiency w.r.t. x86:

^Relative efficiency w.r.t. GPU:

1442 ms

1053 W

+ 1.37 %

- 11.7 %

GPU node

Inverse-Direct transform lasts:

Mean power consumption is:

*Relative efficiency w.r.t. x86:

*Relative efficiency w.r.t. aarch64:

364 ms

< 3684 W

+ 14.8 %

+ 13.2 %

[*] Lower/ [^] Upper bounds based on the power consumption of GPU-Burn

TCO = 1000



17

Impact of GPU frequency scaling on ecTrans



Goal of GPU frequency scaling

18

GPU cores consume power when they are active, and the amount of power notably depends linearly on the operating
frequency of the GPUs (𝑃 ∝ 𝐴 × 𝑓 × 𝑉2, with Activity, Frequency and Voltage)

Scaling down the frequency decreases the power consumption and peak reachable computational capability supplied by
the GPU …

… but not necessarily application effective performance! Think of all the “wasted” cycles waiting for data to be moved from
the memory of the GPUs to their cores

If scaling down the frequency reduces the power consumption more than the induced performance degradation, you have
an efficiency gain

This is precisely our goal: determine if we can improve the energy efficiency of ecTrans by using a lower GPU frequency



Experimental protocol

20

Goal: evaluate the impact of GPU frequency scaling on the efficiency of ecTrans – is the nominal/maximal frequency the
best from the efficiency POV?

Execute ecTrans benchmark (TCO=1000, 500 iterations) for a relevant subset of the available GPU frequencies
(900 𝑀𝐻𝑧

90 𝑀𝐻𝑧 𝑠𝑡𝑒𝑝
 1980 𝑀𝐻𝑧) while monitoring power consumption (1 Hz out-of-band)

Also execute GPU-Burn with the same protocol to build a reference table between “GPU frequency” and “steady power
consumption” for an extremely intense workload

This reference table will be called an “abacus” in the following, and will help us estimate the efficiency of production
ecTrans by substituting the power consumption of GPU-Burn instead of the one of ecTrans benchmark

Each data point is the average of 3 repetitions of the concerned experiment sample



GPU-Burn and the power consumption “abacus”

21

For each selected GPU frequency, the following sequence
was executed 3 times:

▪ 30 seconds of “idleness” (rather “very low activity”)
▪ 5 minutes of burning GPUs
▪ 30 seconds of “idleness”

(Almost) identical results for each repetition so the
samples were considered altogether

Red dots are 1Hz power samples

Bars are average power consumptions for the 5 minutes
of burning GPUs – this is the abacus



GPU-Burn and the power consumption “abacus”

22

For each selected GPU frequency, the following sequence
was executed 3 times:

▪ 30 seconds of “idleness” (rather “very low activity”)
▪ 5 minutes of burning GPUs
▪ 30 seconds of “idleness”

(Almost) identical results for each repetition so the
samples were considered altogether

Red dots are 1Hz power samples

Bars are average power consumptions for the 5 minutes
of burning GPUs – this is the abacus

Burn GPUs

Idle

T
ra

n
s

itio
n



GPU-Burn and the power consumption “abacus”

24

Focus on the plateau of power consumption from 1710
MHz and above (best hypothesis – proving it is future
work):

▪ Maximum consumption for the node is 4kW
(enforced through a system power cap)

▪ Power consumption for a given frequency notably
depends on the precision of silicon etching

▪ To fully exploit frequencies above 1710 MHz, the
GPUs and hence the node would need to consume
more power than 4kW

▪ On this node, the highest enforcable frequency for a
compute-intensive workload with 100% usage rate
seems to be 1710 MHz



Scaling GPU frequency for ecTrans

25

Performance and full node power consumption as functions
of the GPU frequency when executing ecTrans benchmark
with TCO=1000

Plateaux of performance and power consumption with
highest frequencies

Probably an efficiency sweet spot for a GPU frequency
between 1500 MHz and 1700 MHz

Performance degradation skyrockets when GPU frequency is
scaled down below 1350 MHz

Reminder: not 100% usage rate of GPUs, power consumption
not relevant for projections for ecTrans in the context of the
IFS



Then, what about the efficiency of ecTrans benchmark?

26

Relative performance and efficiency of ecTrans
benchmark for TCO=1000 while scaling GPU frequency,
when compared to nominal frequency

Monitored power consumption of ecTrans benchmark –
lesser than the projected power consumption of
production ecTrans (see previous discussion)

Once again, plateaux of performance and efficiency for
highest frequencies

The most efficient GPU frequency for ecTrans
benchmark is 1350 MHz, far from nominal frequency



Then, what about the efficiency of ecTrans benchmark?

27

Two GPU frequencies seem particularly promising since
they induce efficiency gain with a controlled impact on
the performance:

▪ 1620 MHz: +5.29% efficiency for -2.19% performance

▪ 1530 MHz: +6.03% efficiency for -3.74% performance

A higher GPU usage rate would result in greater relative
efficiency gain through frequency scaling – so those
results can be considered as kind of a lower bound

Let’s get a look into that !



Projecting efficiency of production ecTrans with GPU-Burn

28

Projection of relative performance and efficiency of
production ecTrans for TCO=1000 while scaling GPU
frequency, when compared to nominal frequency

Using the GPU-Burn abacus built previously as a
substitute for power consumption of ecTrans benchmark
to build a projection of the efficiency of production
ecTrans

Once again, plateaux of performance and efficiency for
highest frequencies

The most efficient GPU frequency for ecTrans
benchmark is 1080 MHz, even farer from nominal
frequency



Projecting efficiency of production ecTrans with GPU-Burn

29

Since frequency scaling has an impact on power
consumption only when the core are active, the higher
the GPU usage rate, the higher the potential efficiency
gain

That is why efficiency gain could reach 38%

Efficiency gains moved toward lower frequencies when
compared with previous experiment (to be explored)

Two GPU frequencies seem particularly promising since
they induce efficiency gain with a controlled impact on
the performance:

▪ 1530 MHz: +8.66% efficiency for -3.74% performance

▪ 1440 MHz: +17.3% efficiency for -7.06% performance



30

Conclusions + Q&A



Conclusions - Efficiency comparison and GPU frequency scaling

31

The nominal (and maximal) GPU frequency is not (always) the best from the efficiency POV

For ecTrans with TCO=1000, setting the GPU frequency to 1620 MHz seems like a good idea: +5.29 %
(increase) of efficiency and only -2.19 % (decrease) of performance

If ecTrans scales to a 100% usage rate of the GPUs when executed in the context of the IFS, the efficiency
gain projected thanks to the “GPU-burn abacus” could be substantial

[*] Lower/ [^] Upper bounds based on the power consumption of GPU-Burn

TCO = 1000

x86 node

Inverse-Direct transform lasts:

Mean power consumption is:

Relative efficiency w.r.t. aarch64:

^Relative efficiency w.r.t. GPU:

1518 ms

1014 W

- 1.35 %

- 12.9 %

aarch64 node

Inverse-Direct transform lasts:

Mean power consumption is:

Relative efficiency w.r.t. x86:

^Relative efficiency w.r.t. GPU:

1442 ms

1053 W

+ 1.37 %

- 11.7 %

GPU node

Inverse-Direct transform lasts:

Mean power consumption is:

*Relative efficiency w.r.t. x86:

*Relative efficiency w.r.t. aarch64:

364 ms

< 3684 W

+ 14.8 %

+ 13.2 %


	Default Section
	Slide 1: Focus on the energy-efficiency of components of the IFS on Grace Hopper GH200 superchips
	Slide 2: What are we going to talk about?
	Slide 3
	Slide 4: What is the IFS?
	Slide 5: What is the IFS?
	Slide 6: Focus on ecTrans
	Slide 7
	Slide 8: Architectures of the nodes used for experiments
	Slide 9: Experimental protocol
	Slide 10: Coarse-grain profiling of ecTrans on x86
	Slide 11: Coarse-grain profiling of ecTrans on aarch64
	Slide 12: Coarse-grain profiling of ecTrans on GPU
	Slide 13: Coarse-grain profiling of ecTrans on GPU
	Slide 14: Coarse-grain profiling of ecTrans on GPU
	Slide 15: Working around the power monitoring issue
	Slide 16: Wrap up the efficiency comparison between x86, aarch64 and GPU
	Slide 17
	Slide 18: Goal of GPU frequency scaling
	Slide 20: Experimental protocol
	Slide 21: GPU-Burn and the power consumption “abacus”
	Slide 22: GPU-Burn and the power consumption “abacus”
	Slide 24: GPU-Burn and the power consumption “abacus”
	Slide 25: Scaling GPU frequency for ecTrans
	Slide 26: Then, what about the efficiency of ecTrans benchmark?
	Slide 27: Then, what about the efficiency of ecTrans benchmark?
	Slide 28: Projecting efficiency of production ecTrans with GPU-Burn
	Slide 29: Projecting efficiency of production ecTrans with GPU-Burn
	Slide 30
	Slide 31: Conclusions - Efficiency comparison and GPU frequency scaling


