. W

y-efficiency of - e

IFS on Grmﬂom -

January 28th 2026

,/F_’** o **“_11-1 This project has received funding from the European High-Performance Computing ** %
EEr * * 233 uroHPC Joint Undertaking (JU) under grant agreement No 101033975. The JU receives support z X
E"E‘L—_ * * jgg oint Undertaking from the European Union’s Horizon 2020 research and innovation programme and x %

*

1o

L P France, Germany, Italy, Greece, United Kingdom, Czech Republic, Croatia.

1 What are we going to talk about?

> What is the IFS, and more specifically ecTrans?

> Coarse-grain efficiency profiling of ecTrans on x86, aarch64 and GPU executions
= Motivation [ECMWF]: get some insight on the most suited HW target for ecTrans

» Impact of GPU frequency scaling on ecTrans when executed on GPU

= Motivation [Eviden]: efficiency improvement potential with (static) GPU frequency scaling while agnostic of the
application (no prior knowledge, no source code modification, no recompilation)

*EUPEX :

> The Integrated Forecasting System (IFS) is a sophisticated system which aims at forecasting weather-related

physical quantities (e.g. temperature, pressure, rainfall, ...) over Europe on a 15-day time scale

» The forecasts built with the IFS are highly precise (if they say it will rain, you should take an umbrella) and

have a high resolution (one side of a cell of the computation grid represents between 8 and 9 km)

» This sophisticated system notably comprises data assimilation facilities, complex numerical models, and

computing infrastructures

*EUPEX

g 4

=

f
L
¥ .

)

&, . a0
% = :ﬂz
2B sl = SIS
&€ &le S

A
: | =

g A8 &ja 8¢

e = Y &

2 ! | st

g 2l& ale dlE

R G

g 3 =X

E cla §la &8

m 7 ¥ X

8 n 1 ._

2 3la ale &le

:
i
4mmw
2
S 8
' S R
> - £
] 2| | |3 ¢
£ s| |8
S @ | 73 1
§ -8 |18
= Q 1o \
3 o5 ||g " 5
3 5 |2 g 3
= -2 i| 2 £
| o <

*EUPEX

> ecTrans is “a high-performance numerical library for transforming meteorological fields between global grid-point space
representation and a spectral representation based on spherical harmonics” (wiki)

» ecTrans belonged to the source code of the IFS, and was extracted from it and open-sourced in 2022 (source code)

> | am 2 years older than ecTrans — more than 30 years of development and optimization!

> Since ecTrans exhibits compute-intensive and communication-intensive phases and implements computational kernels
quite common in weather-related codes, it would be a great HPC benchmark ... Good news, one benchmark was built from
it and is packaged with its source code

> One of the input parameters of ecTrans is the Truncation Cubic Octahedral (TCO). It sets the overall resolution of the
computational grid, and hence of the benchmark. The higher the TCO, the larger the problem size. ECMWF production
forecasts are made with TCO = 1279

*EUPEX

https://sites.ecmwf.int/docs/ectrans/page/benchmarking.html
https://github.com/ecmwf-ifs/ectrans/blob/develop/src/trans/gpu/internal/trgtol_mod.F90#L544
https://github.com/ecmwf-ifs/ectrans/blob/develop/src/trans/gpu/internal/trgtol_mod.F90#L544

Coarse-grain efficiency profiling of ecTrans on x86, aarch64
and GPU executions

XH3150 (TINO) XH3515-MP (NEBA Max-P) » Both nodes are state-of-the-art:
Eviden R&D system (RHEL97) Hosted in the SDV (RHEL95) x86 — same model f.reshly installed at IT41/VSB
aarch64 + GPU - twin model of JUPITER nodes
GCC-15 + OpenMPI-5.0 NVHPC-25.7
2x Intel Granite Rapids 6952P 4x NVIDIA GH200 modules » In the following, “aarch64 rpeans only the
* Grace CPU - 128 GB LPDDRS Grace CPUs part of the node
Infiniband NDR200 « Infiniband NDR200

Sustained Performance Perf

Effici = Eff = =
fJictency 17 Average Power Consumption Pwr

*EUREX

» Single-node study with the same experimental parameters on 3 different architectures (x86, aarch64, GPU) to compare the
performance and efficiency of the ecTrans benchmark

» Scale the size of the workload by increasing TCO (multiples of 100) while monitoring (1 Hz out-of-band) the full node
power consumption

> The ecTrans benchmark reports a performance metric — the duration of the “Inverse-Direct” transform

> The number of iterations of the computational kernel can be adjusted. With 500 iterations, the ecTrans benchmark lasts
roughly 5 minutes for TCO=1000 on GPUs (plus it is enough repetitions for statistics to be relevant)

> Similarly, TCO=1000 was selected to compare architectures because that is the highest multiple of 100 for which the
workload fits in the memory of the GPUs

*EUPEX

Execution time of the transform (in milliseconds)

TCO scaling for the "Inverse-Direct” transform - at nominal CPU frequency

700

800

900

1000

Scaling the workload (i.e. the TCO) on a single Intel GNR
compute node with execution of ecTrans on 2 x86 CPUs

GCC-15 + OpenMPI-5.0
Execution time is globally exponential (~0(x%%)) of the TCO

For TCO=1000 and 500 iterations:
= Duration of “Inverse-Direct” transform = 1517.6 ms
= Power consumption = 1014 W

10

Execution time of the transform (in milliseconds)

TCO scaling for the "Inverse-Direct” transform - at nominal CPU frequency

800

900

1000

Scaling the workload (i.e. the TCO) on a single GH200 compute
node with execution of ecTrans on 4 Grace CPUs

NVHPC-25.7
Execution time is globally exponential (~0(x%#%)) of the TCO

The power consumption of the GPUs was subtracted from the
full node power consumption

For TCO=1000 and 500 iterations:
= Duration of “Inverse-Direct” transform = 1441.5 ms
= Power consumption = 1053 W

11

TCO scaling for the "Inverse-Direct” transform - at nominal GPU frequency

400.0-

3750 » Scaling the workload (i.e. the TCO) on a single GH200 compute

_ e —— node with execution of ecTrans on 4 GPUs
e 325.0-
§ o » NVHPC-25.7 (including OpenACC)
T 275.0-
'~§ zzzz » Execution time is globally quadratic (~0(x?)) of the TCO
€ a0 » TCO=1000 fills 80+% of the memory of the GPUs (“limiting
£ o factor” as stated previously)
'4% 125:0-
E o > For TCO=1000 and 500 iterations:
zzzz: = Duration of “Inverse-Direct” transform = 363.7 ms

~ Power consumption = ... small issue here, let’s focus on it

100 200 300 400 500 600 700 800 900 1000

»EUPEX .

350-

250-

200-

150-

50

*EUPEX

100

150

200

80000-

60000-

40000-

20000-

N

0

50

GPUID
-

-_—

—

100

150

200

100-

75-

50-

25-

Time elapsed since the start of the execution (in seconds)

0

50

i
W M I\N

100

150

200

Power consumption, allocated
memory and GPU usage rate during
the execution of ecTrans for
TCO=1000

Imbalance between the GPUs

Erratic and limited usage rate of the
GPUs (~65%)

Low usage rate of the GPUs implies
lower power consumption when
compared to expectations (700+ W
per GPU sustained for HPL)

13

GPU

> We believe the low usage rate of GPUs stems from the fact that memory allocations and transfers of input data from host
to accelerator are done in the main computational loop, not in bulk before the latter

» (Very) roughly, while moving data between host and accelerator, the GPUs are not computing - hence the low usage rate

> Consequently, the full node power consumption associated with ecTrans benchmark is not representative of the full node
power consumption of ecTrans in the production context of the IFS (while performance are)

E.g. link to source code (L544-617) TRGTOL is a “leaf” function called in the main loop of the benchmark.

It transposes grid point data from column structure to latitudinal and it reorganizes data between grid point calculations and direct Fourier Transform.

In this function, like in all the other key “leaf” functions, OpenACC “COPYIN" directives are called just before “PARALLEL LOOP” directives.

Thus, data movement between host and accelerators happens at each iteration of the benchmark, just before the offloading of the nested computational loops.

*EUPEX

https://github.com/ecmwf-ifs/ectrans/blob/develop/src/trans/gpu/internal/trgtol_mod.F90#L544
https://github.com/ecmwf-ifs/ectrans/blob/develop/src/trans/gpu/internal/trgtol_mod.F90#L544
https://github.com/ecmwf-ifs/ectrans/blob/develop/src/trans/gpu/internal/trgtol_mod.F90#L544
https://github.com/ecmwf-ifs/ectrans/blob/develop/src/trans/gpu/internal/trgtol_mod.F90#L544

» Since measuring full node power consumption for ecTrans benchmark is not relevant to estimate full node power
consumption for production ecTrans, we can build a worst-case scenario for it.

» |dea: use GPU-Burn (link to source code) as a surrogate to build an upper bound on the power consumption of production
ecTrans (and thus a lower bound on its efficiency)

> Indeed, GPU-Burn induces a 100% rate usage with very high and steady power consumption on the GPUs (it is quite
unlikely that production ecTrans would consume more power than GPU-Burn).

> Executing GPU-Burn with an 80% memory occupancy for nominal/maximal GPU frequency draws 3684 W (more details
about experiments with GPU-Burn in the last section)

*EUPEX

https://github.com/wilicc/gpu-burn
https://github.com/wilicc/gpu-burn
https://github.com/wilicc/gpu-burn
https://github.com/wilicc/gpu-burn

aarch64 node GPU node

Inverse-Direct transform lasts: 1518 ms
Mean power consumption is: 1014 W
Relative efficiency w.r.t. aarch64: -1.35%
ARelative efficiency w.r.t. GPU: -12.9 %

Inverse-Direct transform lasts: 1442 ms
Mean power consumption is: 1053 W
Relative efficiency w.r.t. x86: +1.37%
*Relative efficiency w.r.t. GPU: -11.7 %

Inverse-Direct transform lasts:
Mean power consumption is:
*Relative efficiency w.r.t. x86:

*Relative efficiency w.r.t. aarch64:

364 ms
<3684 W
+14.8%
+13.2%

> Execution of ecTrans benchmark is significantly more efficient on GPU, even in a worst-case scenario

» There is a 4x speed up for single-node performance of ecTrans when going from CPUs to GPUs

» For ecTrans, GPU is also better than CPU from the density POV, since there is usually 3 CPU nodes per 1U blade, versus 1

GPU node per 1U blade

*EUREX

[*] Lower/ [*] Upper bounds based on the power consumption of GPU-Burn

® e =
: 5 sie
® N
o =
> . ”ﬁ
: > =
e —y °o

Impact of GPU frequency scaling on ecTrans

e

. ——
. . x : .) .

@ = A —
. ® o . : —

o

1 Goal of GPU frequency scaling

* GPU cores consume power when they are active, and the amount of power notably depends linearly on the operating
frequency of the GPUs (P o« A X f x V2, with Activity, Frequency and Voltage)

» Scaling down the frequency decreases the power consumption and peak reachable computational capability supplied by
the GPU ...

* ... but not necessarily application effective performance! Think of all the “wasted” cycles waiting for data to be moved from
the memory of the GPUs to their cores

» If scaling down the frequency reduces the power consumption more than the induced performance degradation, you have
an efficiency gain

» This is precisely our goal: determine if we can improve the energy efficiency of ecTrans by using a lower GPU frequency

*EUPEX

18

> Goal: evaluate the impact of GPU frequency scaling on the efficiency of ecTrans - is the nominal/maximal frequency the
best from the efficiency POV?

» Execute ecTrans benchmark (TCO=1000, 500 iterations) for a relevant subset of the available GPU frequencies

(900 MHz P — 1980 MHz) while monitoring power consumption (1 Hz out-of-band)

> Also execute GPU-Burn with the same protocol to build a reference table between “GPU frequency” and “steady power
consumption” for an extremely intense workload

> This reference table will be called an “abacus” in the following, and will help us estimate the efficiency of production
ecTrans by substituting the power consumption of GPU-Burn instead of the one of ecTrans benchmark

> Each data point is the average of 3 repetitions of the concerned experiment sample

*EUPEX

Power consumption as a function of GPU frequency for GPU-Burn

4000-

3200-
2400-
1600-
8
0-

1080 1170 1260 1350 1440 1530 1620 1710 1800 1890 1980
Requested (not actual) GPU frequency in MHz

e

For each selected GPU frequency, the following sequence
was executed 3 times:
30 seconds of “idleness” (rather “very low activity”)
5 minutes of burning GPUs
30 seconds of “idleness”

e

(Almost) identical results for each repetition so the
samples were considered altogether

e

Red dots are THz power samples

Average power consumption in Watts and associated samples
[=]
O

e

Bars are average power consumptions for the 5 minutes
of burning GPUs - this is the abacus

=EUREX

4000-

3200-

2400-

1600-

800-

Average power consumption in Watts and associated samples

900

=EUPEX

990

Power consumption as a function of GPU frequency for GPU-Burn

1080

1170 1260 1350 1440 1530 1620 1710
Requested (not actual) GPU frequency in MHz

1800

1890

Burn GPUs

1980

uonisuels |

For each selected GPU frequency, the following sequence
was executed 3 times:
30 seconds of “idleness” (rather “very low activity”)
5 minutes of burning GPUs
30 seconds of “idleness”

(Almost) identical results for each repetition so the
samples were considered altogether

Red dots are THz power samples

Bars are average power consumptions for the 5 minutes
of burning GPUs - this is the abacus

Power consumption as a function of GPU frequency for GPU-Burn

4000-

3200-
2400-
1600-
8
0-

1080 1170 1260 1350 1440 1530 1620 1710 1800 1890 1980
Requested (not actual) GPU frequency in MHz

> Focus on the plateau of power consumption from 1710
MHz and above (best hypothesis - proving it is future
work):

Maximum consumption for the node is 4kW
(enforced through a system power cap)

Power consumption for a given frequency notably
depends on the precision of silicon etching

To fully exploit frequencies above 1710 MHz, the
GPUs and hence the node would need to consume
more power than 4kW

Average power consumption in Watts and associated samples
[=]
O

On this node, the highest enforcable frequency for a
compute-intensive workload with 100% usage rate
seems to be 1710 MHz

=EUREX

GPU frequency scaling for the "Inverse-Direct” transform with TCO=1000

550- . .
» Performance and full node power consumption as functions

of the GPU frequency when executing ecTrans benchmark
with TCO=1000

525-

. » Plateaux of performance and power consumption with

highest frequencies
475-

= Probably an efficiency sweet spot for a GPU frequency
between 1500 MHz and 1700 MHz

450-

425-

» Performance degradation skyrockets when GPU frequency is
scaled down below 1350 MHz

(snepn un) uondwnsuoo Jamod apou ||n4

400

Execution time of the transform (in milliseconds)

378 > Reminder: not 100% usage rate of GPUs, power consumption

not relevant for projections for ecTrans in the context of the
350- IFS

900 990 1080 1170 1260 1350 1440 1530 1620 1710 1800 1890 1980

Requested (not actual) frequency of the GPUs (in MHz)

*EUPEX 2

-
ha

—_
o

Relative values when compared to nominal frequency

o
=

o
o

—_
—ry

Relative performance and efficiency of ecTrans benchmark with TCO=1000 when scaling GPU frequency

[Efficiency
M Performance

o
o

o
o

o
=

o
&

o
1

o
-

o
e

o
n

il

1080 1170 1260 1350 1440 1530 1620 1710 1800 1890 1980
Requested (not actual) frequency of the GPUs (in MHz)

*EUPEX

g

R

g

benchmark

Relative performance and efficiency of ecTrans
benchmark for TCO=1000 while scaling GPU frequency,
when compared to nominal frequency

Monitored power consumption of ecTrans benchmark —
lesser than the projected power consumption of
production ecTrans (see previous discussion)

Once again, plateaux of performance and efficiency for
highest frequencies

The most efficient GPU frequency for ecTrans
benchmark is 1350 MHz, far from nominal frequency

Relative performance and efficiency of ecTrans benchmark with TCO=1000 when scaling GPU frequency

[Efficiency
1.2- B Performance

—_
—ry

—_
o

o
©

Relative values when compared to nominal frequency
e e e e e e e e
- r ol - o < =~ ®

0.0-

1080 1170 1260 1350 1440\ 1530 1620) 1710 1800 1890 1980
Requested (not actual) frequency of the GPUs (in MHz)

Two GPU frequencies seem particularly promising since
they induce efficiency gain with a controlled impact on
the performance:

= 1620 MHz: +5.29% efficiency for -2.19% performance
= 1530 MHz: +6.03% efficiency for -3.74% performance

A higher GPU usage rate would result in greater relative
efficiency gain through frequency scaling — so those
results can be considered as kind of a lower bound

Let's get a look into that !

27

efficiency of ecTrans with GPU-Burn

Projection based on GPU-Burn abacus of relative performance and efficiency of production ecTrans
with TCO=1000 when scaling GPU frequency

ra [Bticency » Projection of relative performance and efficiency of
| T production ecTrans for TCO=1000 while scaling GPU
frequency, when compared to nominal frequency

- a4
= M

» Using the GPU-Burn abacus built previously as a
substitute for power consumption of ecTrans benchmark
to build a projection of the efficiency of production
ecTrans

o

> Once again, plateaux of performance and efficiency for
highest frequencies

o
-

Relative values when compared to nominal frequency
o
w

e o
Ny

* The most efficient GPU frequency for ecTrans
benchmark is 1080 MHz, even farer from nominal
frequency

e
o -

900 990 1080 1170 1260 1350 1440 1530 1620 1710 1800 1890 1980

Requested (not actual) frequency of the GPUs (in MHz)

*EUPEX 2

ecTrans with GPU-Burn

Projection based on GPU-Burn abacus of relative performance and efficiency of production ecTrans
with TCO=1000 when scaling GPU frequency

B Efficiency > Since frequency scaling has an impact on power
1.4- B Performance T\ . . .
consumption only when the core are active, the higher

gi the GPU usage rate, the higher the potential efficiency
£, gain

'Ew 5 B B B » That is why efficiency gain could reach 38%

Tos » Efficiency gains moved toward lower frequencies when
g, compared with previous experiment (to be explored)

EO.S

> Two GPU frequencies seem particularly promising since
they induce efficiency gain with a controlled impact on
the performance:

= 1530 MHz: +8.66% efficiency for -3.74% performance
= 1440 MHz: +17.3% efficiency for -7.06% performance

Relative values whe

900 990 1080 1170 1260 1350 \ 1440 1530) 1620 1710 1800 1890 1980
Requested (not actual) frequency of the GPUs (in MHz)

*EUPEX 5

Conclusions + Q&A

Inverse-Direct transform lasts:

Mean power consumption is:
Relative efficiency w.r.t. aarch64:

ARelative efficiency w.r.t. GPU:

1518 ms Inverse-Direct transform lasts: 1442 ms Inverse-Direct transform lasts:
1014 W Mean power consumption is: 1053 W Mean power consumption is:
-1.35% Relative efficiency w.r.t. x86: +1.37% *Relative efficiency w.r.t. x86:
-12.9 % ARelative efficiency w.r.t. GPU: -11.7 % *Relative efficiency w.r.t. aarch64:

364 ms
<3684 W
+14.8 %
+13.2 %

» The nominal (and maximal) GPU frequency is not (always) the best from the efficiency POV

> For ecTrans with TCO=1000, setting the GPU frequency to 1620 MHz seems like a good idea: +5.29 %
(increase) of efficiency and only -2.19 % (decrease) of performance

> If ecTrans scales to a 100% usage rate of the GPUs when executed in the context of the IFS, the efficiency
gain projected thanks to the “GPU-burn abacus” could be substantial

*EURPEX

[*] Lower/ [*] Upper bounds based on the power consumption of GPU-Burn

	Default Section
	Slide 1: Focus on the energy-efficiency of components of the IFS on Grace Hopper GH200 superchips
	Slide 2: What are we going to talk about?
	Slide 3
	Slide 4: What is the IFS?
	Slide 5: What is the IFS?
	Slide 6: Focus on ecTrans
	Slide 7
	Slide 8: Architectures of the nodes used for experiments
	Slide 9: Experimental protocol
	Slide 10: Coarse-grain profiling of ecTrans on x86
	Slide 11: Coarse-grain profiling of ecTrans on aarch64
	Slide 12: Coarse-grain profiling of ecTrans on GPU
	Slide 13: Coarse-grain profiling of ecTrans on GPU
	Slide 14: Coarse-grain profiling of ecTrans on GPU
	Slide 15: Working around the power monitoring issue
	Slide 16: Wrap up the efficiency comparison between x86, aarch64 and GPU
	Slide 17
	Slide 18: Goal of GPU frequency scaling
	Slide 20: Experimental protocol
	Slide 21: GPU-Burn and the power consumption “abacus”
	Slide 22: GPU-Burn and the power consumption “abacus”
	Slide 24: GPU-Burn and the power consumption “abacus”
	Slide 25: Scaling GPU frequency for ecTrans
	Slide 26: Then, what about the efficiency of ecTrans benchmark?
	Slide 27: Then, what about the efficiency of ecTrans benchmark?
	Slide 28: Projecting efficiency of production ecTrans with GPU-Burn
	Slide 29: Projecting efficiency of production ecTrans with GPU-Burn
	Slide 30
	Slide 31: Conclusions - Efficiency comparison and GPU frequency scaling

