

= Power [W] Energy = Power X Time

= TW*1s=1J

* TW*Th=1Wh=3600J A

[A] 1emog

*EUPEX

* Power [W]
» TW*1s=1J

= TW*T

Power (W)
3

h=1Wh=3600J

Power (W)
3.51

*EUPEX

Img source, Luis Cruz (TU Delft)

Energy = Power X Time

t
Energy(t) = / Power(z)dx =~
0

> oo PowerSample;
SamplingFrequency

0.0
000000000000

Power (W)
3.5 1

0.0 J
000000000000

« Sysfs: /sys/devices/virtual/powercap/intel-rapl/intel-rapl:X/intel-rapl:0:Y

* Power domains:

» Package: limits the power consumption for the entire package of the CPU,
this includes cores and uncore components
« short (1.2* TDP, ~ milliseconds) and long window (TDP, ~ second)

« DRAM: is used to power cap the DRAM memory = memory monitoring, P-State scaling
« only for server architectures, no client
» single time window
* indefaultis turned off

« PPO/Core: is used to restrict the power limit only to the cores of the CPU
* N0 new server
» single time window

« PP1/Graphic: is used to power limit only the graphic component of the CPU
* NO server
* single time window

« PSys/Platform: controls entire System on Chip

» short and long window
« available from Skylake architecture
* requires support from vendor

DRAM DIMM 0

Package O

System Agent

Core Core

Core Core

Last Level Cache
Memory Controller

Integrated
graphics

|:| Package

[] Powerplane 1[C] DRAM

» Psys

::' EUpPEX Img src Khan, K. et al. “RAPL in Action.”

DRAM DIMM 1

|:| Powerplane 0

320 T T T T 2000
'-} MSR M SR—PKG—POWER—L I M I T (0X61 0) 300 |-|—Accelerator Power U!sa e ‘I;ACKAGE) : I'—!FreqliencyL 1800
——=Memory Power Usage (DDR4)
280 -|=——=Max power limit set ~ - <1600
6362 5655 4746 3231 242
: . 4948 3 . 171615 14 0 260 J _ W 11400
P Pover L2 Pkg Power Limit #2 Peower Lt Pkg Power Limit #1 a 240 |1 | 1 1200
. £ 220+ 1000
©
LL - S 200 {800
pkgEé'Sﬁlﬁi'r'.B"ﬁnﬂ #1] ¥ 1000
Enable limit #2 = - 1400 T
Pkg clamping limit #2 g. =
& o0l | jasdaad
S
o L _
Z T &
)
o
=
0
0 10 20 30 40 50 60 70 80 9 100 110
Time (sec)

Haidar et al: Investigating power capping toward energy-efficient scientific applications

*EUPEX :

1 GraceHopper power monitoring

» Standard HWMON interface

» [sys/class/hwmon/hwmon*/device/powerl_average

» /sys/class/hwmon/hwmon*/device/powerl average interval
* Over 50-1000ms interval at the set of sensor points
+ Average power in the window, no energy accumulation

» The same is valid for GraceBlackwell as well

*EUPEX ;

Grace Hopper Superchip Telemetry

HWMON Grace CPU

Module oPU All Cores
) MOd u Ie iner[:;ulpplv] [Regulator Cat;es

i

- Grace = CPU+5y=10+DRAM . ystem 0

Other
Regulators

.

LPDDR5X DRAM

- CPU

Hopper and HBM

Regulators | |
N S S I 0 Hopper
y HEM GPU
« GPU = Module - Grace
Legend
Total module power
Grace Power, including DRAM and power for all regulators
PU Power, including regulater power
:::- E U P E X.' SyslQ Power, including regulator power 7

NVML

Grace Hopper Superchip Telemetry

* nvmlDeviceGetTotalEnergyConsumption

Grace CPU
All Cores
cPU
: e .
s0C
Regulator System 10

Hopper and HBM

Other
Regulators

LPDDR5X DRAM

Regulators [

HBM

Hopper
GPU

Legend

Total module power

Grace Power, including DRAM and power for all regulators

CPU Power, including regulator power

e

*EUPEX

Sysl0 Power, including regulator power

NVML

« nvmlDeviceGetPowerUsage

*EUPEX

Grace Hopper Superchip Telemetry

Module
Power Supply

i

0

cepitor

Grace CPU

All Cores

Caches

i
Regulator

System 10

LPDDR5X DRAM

Other
Regulators
| | Hopper and HEM

Regulators [

HBM

Hopper
GPU

Legend

Total module power

Grace Power, including DRAM and power for all regulators

CPU Power, including regulator power

B

Sysl0 Power, including regulator power

NVML

 nvmlDeviceGetFieldValues

- GPU_POWER
- MODULE_POWER
 MEMORY_POWER

*EUPEX

Grace Hopper Superchip Telemetry

Grace CPU
All Cores
_ Repulator e
Regulator System 10

Other
Regulators

LPDDR5X DRAM

Regulators

| | Hopper and HBM

HBM

Hopper
GPU

Total module power

Grace Power, including DRAM and power for all regulators

CPU Power, including regulator power

e

Sysl0 Power, including regulator power

10

HWMON

* Grace

- CPU

« SyslO

* DRAM = CGrace-CPU-SysiO

No GPU, no NVML

*EUPEX

Module
Power Supply

Grace Superchip Telemetry

Grace CPU Socket 0
All Cores
e
Sensor_0A Sensor_1A CPU Regulator +
N -
Caches
|- —(Sensor_2A S0C Regulator System 10

Other Regulators

LPDDR5X DRAM Socket 0

— e 08— sror 10)P regitor_|——

_rCEE?ﬁfE>F4 S0C Regulator ———

Other Regulators

LPDDR5X DRAM Socket 1

Legend
Sensor_0A/B Grace Power, including DRAM and power for all regulators
Sensor_l14/B CPU Power, including regulator power
Sensor_2A/B SyslQ Power, including regulator power

11

» Average power in the window, no energy accumulation

* Upgrade your BIOS HWMON

Module Power Socket 0

» Fixed version released in 2024H2

2000 L L L LB

1500 W Value W]
7 - 1 ; " [1~ . [

Power [W)]

) 85% of samples
SRALEESIF ORI OEP OIS PO OISR

Time [ms]

*EUPEX §

> CPU frequency - /sys/devices/system/cpu/cpu*/cpufreq/scaling setspeed
> GPU SM frequency - nvmlDeviceSetApplicationsClocks

> GPU HBM frequency - nvmlDeviceSetApplicationsClocks

» CPU power limit - /sys/class/hwmon/hwmonX/device/powerl cap

* GPU power limit - nvmlDeviceSetPowerManagementLimit v2

» Module power limit - nvmlDeviceSetPowerManagementLimit v2

*EUPEX

*EUPEX

MODULE

/ Static Power \
Budget :

STt

GPU

=

Automatic

Power Steering

\

GPU

14

MERIC SW suite

HPC cluster:

workload manager

Data analytics Budgeting Power capping J Runtime system

Power monitoring Power management
15

READEX methodology TECHNISCHE

DRESDEN
« H2020 READEX, 2015-2018
« Complex parallel application has different requirements TI.ITI
during execution, so it gives a possibility to be dynamically
tuned for energy savings without performance penalty. B NTNU
IT4Innovations
| | national
T
_ UGG ,M,L,,,'l DN S5 Sy
Y B
._ « intel)
‘P“ﬂ“**““““”J“ | k <;-.--i’ !]rls;i%c>
::}427%};/
L L L R L L L L L L O L L R

Sample number

« Goal was to create a tools-aided methodology for automatic tuning of parallel
“EURPEX applications. Dynamically adjust system parameters to actual resource requirements.

intel_rapl kernel
module

amd_energy
kernel module

AMD CPU

msr_safe kernel
module

perf

intel_rapl kernel
module

Intel CPU msr_safe kernel
module

perf
AG64F X perf
Nvidia GPU NVML

AMD GPU ROCm

GraceHopper [lliiioh

EuroHPC sites energy measurement

» Highly parallel framework for engineering application
- C++, OpenMP, MPI, CUDA, HIP, SYCL
* Input:

+ Unstructured mesh (millions of nodes/elements)

- Physical parameters, boundary conditions

* Physical simulation:

- Finite element method

-+ FETI solver (Finite Element Tearing and Interconnection)

*EUPEX

18

> FETI solver

- Massive parallel solver based on methods of domain decomposition
- Individual domains solved separately by a third-party sparse direct solver

+ Overall solution computed by iterative solver

 Scalability approved on many HPC clusters

 EUPEX

- Single node performance

- Porting to Arm & GPU acceleration

*EUPEX

19

system of linear equation

Physical

assembler

solution of the system

=EUPEX

> Physical assembler
Transform physical parameters into a system of linear equations

Local matrix kernels applied to each mesh element

Cross-element vectorization for optimal utilization SVE instruction set for Arm CPUs

K. Kadlubiak, O. Meca, L. Riha, T. Brzobohaty. An approach for dynamically adaptable SIMD vectorization of FEM kernels.

Computer Physics Communications, Volume 304, 2024. https://doi.org/10.1016/j.cpc.2024.109319

« Speedup 2.41 - 5.88 (4.27 at average)

« The complexity of the kernel is dynamically adapted to the complexity of a solved physical phenomena

*EUPEX

https://doi.org/10.1016/j.cpc.2024.109319

» FETI solver

- Solve a sparse system of linear equations

+ GPU acceleration: computation of Schur complement of sparse domain matrices

J. Homola, R. Vavfik, O. Meca, T. Brzobohaty, L. Riha. Assembly of FETI dual operator using CUDA. IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), Milano, Italy, 2025, pp. 365-374, DOI:
10.1109/IPDPSW66978.2025.00062.

e Fine-tuned utilization of cuBLAS and cuSPARSE kernels

* Up to 10 speedup of GPU preprocessing

*EUPEX

22

» FETI solver
Solve a sparse system of linear equations

GPU acceleration: computation of Schur complement of sparse domain matrices

J. Homola, 0. Meca, T. Brzobohaty, L. Riha. Utilizing Sparsity in the GPU-accelerated Assembly of Schur Complement
Matrices in Domain Decomposition Methods. Proceedings of the International Conference for High Performance Computing,

Networking, Storage, and Analysis, SC 2025, pp. 1464 — 1476. DOI: 10.1145/3712285.3759904.
« Utilization of a sparsity pattern in domain decomposition methods to improve acceleration

« Up to 3.3 speedup for large matrices

*EUPEX

30
ﬁﬁﬁﬁﬁﬁ

*EUPEX

T : M e

| I

=]
S

R AL LA A
""Il‘l‘l f]‘ ry

Power [W]
[
=]
(=]
—

100

Ly 1

*EUPEX

80 100 120
Time [s]

HWMON (CPU_Power_Socket_0) espreso_static pm0-ned22 10
HWMON (GPU_Power_Socket_0) espreso_static pm0-nod22 10
HWMON (Grace_Power_Socket_0) espreso_static pm0-nod22 10
HWMON (SyslO_Power_Socket_0) espreso_static pm0-nod22 10
HWMON (Module_Power_Socket_0) espreso_static pm0-nod22 10

140

25

Idle power consumption

250 -

AU
A

100 -

Power [W]

50 A

AN

1 2 3 4 5 6 7 8
Time [5]

— HWMON (CPU_Power Socket 0) espreso static pm0-nod22 10
I —— HWMON (GPU Power Socket 0) espreso static pm0-nod22 10
*EUPEX

PU workload - power consumption

ﬂﬂﬂﬂﬂﬂ

*EUPEX

GPU frequency change

ACCcore A
frequency

init frequency -

(=T pe (2§ g=T0 [7m0 UGN S S . Sy s S R .
I | :)
|
|
I
|
I
|
|
\L >
< time
t o t_communication i t_transition
- te
t_switching
switching latency
I |
CPU new frequency| | request
request sent to device
ACC L> new frequency new frequency| [frequency new frequency
request received [| device call change [~ | being applied

l 1
l

transition latency

Visualization of CPU to ACC communication while issuing the ACC frequency change request.
The dashed line shows the frequency change.

*EUREX

*EUPEX

GPU switching latency

705

705

795

885 12.275

975 22.044
1095 13.463
1170 22.652
1260 21.902
1275 23.206
1290 9.704
1350 21.346
1410 7.144
1500 20.659
1665 12.943
1770 10.340
1830 10.835
1875 20.748
1920 15.406
1980 18.167

Initiabl Frequency [MHz]

GH200

795

8.578
22.892
14.539
17.604
20.660
20.108
20.448
10.168
21.880
21.323
23.587

8.987
20.862
11.156
22.732

885

24.447

10.898
18.161
18.593
22.838
20.516
21.407
17.922

7.269
21.112
16.131
13.653
21.918
13.092

6.381

975

10.810
20.843

13.348
17.761
20.896

8.661
15.290
11.711
12.714

6.836
18.074
13.675
23.699
13.803
10.961

5.6 - 477.3 ms (worst case)

1095
12.011
9.912
11.466

20.199
22.629
19.967
22.037

7.708
22.527
12.932
23.233
10.687
21.647
11.025
23.524

1170

11.304

9.620

15.884
13.809
13.977

18.610
23.195
21.387
16.080
10.455
13.647

7.181
20.063
15.608
23.388
22.658
11.712

Target Frequency [MHz]

1260 1275
245.369 260.804
245403 201.442
245967 256.423
246.252 262.165
477.318 263.368
245.255 261.746
17.852

24.814
11.955 9.826
281.823 270.188
289.860 288.611
214.905 214.531
307.031 294.634
113.783 302.975
464.768 23.398
16.524 1 450.205
23.297 10.878
8.805 411.839

1290
10.902
9.711
15.500
24.325
10.369
20.976
20.461
23.143

21.962
40.594
22.739
16.823
37.616
15.829
24.392
11.264
23.071

1350
12.913
14.533
12.634
21.214
14.203
21.091
19.380
20.280
10.780

89.338
13.191
10.449
43.385

6.459
14.387
10.358
11.255

1410
18.105
22.467
14.566
11.174
11.363
21.628
16.872
15.901
16.712
5.572

9.376
20.144
20.048
14.277
12.933
11.811
10.035

1500
18.417
22.072
15.200
22.791
12.715
12.720
11.227
22.285
18.380
11.152

193.691

24.922
203.689
20.801
12.984
20.946
20.425

1665
17.168
18.362
13.015
13.539
11.490
12.777
18.456
20.655
10.740
20.952

207.739
12.751

203.899
16.805
9.518
10.871
11.432

1770
24.686
17.251
16.203
18.346
15.582
22.192
18.743
19.650
17.160
19.520
32.955
19.202
16.539

20.437
10.320
20.486

1830
22.362
15.133
13.015
10.954
11.562
17.463
17.533
21.766
146.854

18.065
206.769
11.235
14.068
85.533

11.159
13.080
10.398

1875
10.648
12.962
14.424
16.261
10.375
22.192
19.690
20.122
25.762
19.853

201.386
20.709
14.518

159.767

16.332

20.164

1920
261.650
246.805
204.722
290.120
302.414
289.421
304.845
303.514
306.059
303.097
290.660
302.169
255.089
301.611
282.039
274.134

298.295

1980
22.346
22.572
32.591
24.026
19.479
20.285
14.879
13.227

174.150
20.524
210.565
12.840
24.521
206.412
14.175
16.785
10.916

D. Velicka, O. Vysocky, O. Yasal, L. Riha "An In-Depth Study of GPU
Frequency-Scaling Latency and Its Optimization on Modern
Architectures”, Future Generation Computer Systems, 179 (2025):
108331, https://doi.org/10.1016/j.future.2025.108331

https://doi.org/10.1016/j.future.2025.108331

+EUPEX

=] (=] o o (=] o
(=] (=] o o (=) (=] (=]
[as] M~ (=] T3] =t] ~

+EUPEX

1 E
7 Energy measurement

> Module NVML energy - 23.970 kJ
> Module NVML power - 37.154 kJ
*Module HWMON - 36.398 kJ

* GPU HWMON - 30.215 kJ

> Which one should we trust?

*EUPEX

» ESPRESO FEM shows how to optimize for Arm CPU and/or GPU

Performance optimization is the best approach how to improve energy efficiency

Despite performance optimizations it gives opportunity to improve energy usage

> Initial results of ESPRESO energy consumption optimization in GH200 (without performance
penalty)
CPU run - 2%
GPU run — 8%

- GraceHopper (GraceBlackwell) power monitoring and power management is tricky
=> Further validation study is necessary

*EUPEX

	Restricted session
	Slide 1: Energy efficiency optimization using dynamic tuning of Grace Hopper frequencies
	Slide 2: Energy
	Slide 3: Energy
	Slide 4: Intel Running Average Power Limit (RAPL)
	Slide 5: Intel Running Average Power Limit (RAPL)
	Slide 6: GraceHopper power monitoring
	Slide 7: GraceHopper power monitoring
	Slide 8: GraceHopper power monitoring
	Slide 9: GraceHopper power monitoring
	Slide 10: GraceHopper power monitoring
	Slide 11: Grace superchip power monitoring
	Slide 12: Grace/GraceHopper power monitoring
	Slide 13: GH200 power management
	Slide 14: Module power capping
	Slide 15: MERIC SW suite
	Slide 16: READEX methodology
	Slide 17: EuroHPC sites energy measurement
	Slide 18: ESPRESO FEM
	Slide 19: ESPRESO FEM
	Slide 20: ESPRESO FEM
	Slide 21: ESPRESO FEM
	Slide 22: ESPRESO FEM
	Slide 23: ESPRESO FEM
	Slide 24: CPU workload - CPU power consumption
	Slide 25: CPU workload - GH200 power consumption
	Slide 26: Idle power consumption
	Slide 27: GPU workload - power consumption
	Slide 28: GPU frequency change
	Slide 29: GPU switching latency
	Slide 30: HWMON vs NVML (GPU)
	Slide 31: HWMON vs NVML (Module)
	Slide 32: Energy measurement
	Slide 33: Conclusion

